Unstable Response
Geometrically nonlinear static problems sometimes involve buckling or collapse behavior, where the load-displacement response shows a negative stiffness and the structure must release strain energy to remain in equilibrium. Several approaches are possible for modeling such behavior. One is to treat the buckling response dynamically, thus actually modeling the response with inertia effects included as the structure snaps. This approach is easily accomplished by restarting the terminated static procedure (Restarting an Analysis) and switching to a dynamic procedure (Implicit Dynamic Analysis Using Direct Integration) when the static solution becomes unstable. In some simple cases displacement control can provide a solution, even when the conjugate load (the reaction force) is decreasing as the displacement increases. Another approach would be to use dashpots to stabilize the structure during a static analysis. Abaqus/Standard offers an automated version of this stabilization approach for the static analysis procedures (see Static Stress Analysis, Quasi-Static Analysis, Fully Coupled Thermal-Stress Analysis, or Coupled Pore Fluid Diffusion and Stress Analysis).
Alternatively, static equilibrium states during the unstable phase of the response can be found by using the “modified Riks method.” This method is used for cases where the loading is proportional; that is, where the load magnitudes are governed by a single scalar parameter. The method can provide solutions even in cases of complex, unstable response such as that shown in Figure 1.

The Riks method is also useful for solving ill-conditioned problems such as limit load problems or almost unstable problems that exhibit softening.