Defining Contact of Cracked Element Surfaces Using a Small-Sliding Formulation
When an element is cut by a crack, the compressive behavior of the crack surfaces has to be considered. The formulation that governs the compressive behavior is very similar to that used for surface-based small-sliding penalty contact (About Mechanical Contact Properties). A more general small-sliding surface interaction model between the cracked element surfaces can be defined in user subroutine UXFEMCRACK.
For an element intersected by a stationary crack or a moving crack with the linear elastic fracture mechanics approach, it is assumed that the elastic cohesive strength of the cracked element is zero. Therefore, compressive behavior of the crack surfaces is fully defined with the above options when the crack surfaces come into contact. For a moving crack with the cohesive segments method, the situation is more complex; traction-separation cohesive behavior as well as compressive behavior of the crack surfaces are involved in a cracked element. In the contact normal direction, the pressure-overclosure relationship governing the compressive behavior between the surfaces does not interact with the cohesive behavior, since they each describe the interaction between the surfaces in a different contact regime. The pressure-overclosure relationship governs the behavior only when the crack is “closed”; the cohesive behavior contributes to the contact normal stress only when the crack is “open” (that is, not in contact).
If the elastic cohesive stiffness of an element is undamaged in the shear direction, it is assumed that the cohesive behavior is active. Any tangential slip is assumed to be purely elastic in nature and is resisted by the elastic cohesive strength of the element, resulting in shear forces. If damage has been defined, the cohesive contribution to the shear stresses starts degrading with damage evolution. Once maximum degradation has been reached, the cohesive contribution to the shear stresses is zero. The friction model activates and begins contributing to the shear stresses.