![]() The stress line ![]() ![]() When you click or in the Stress Linearization dialog box, Abaqus/CAE creates an X–Y plot of the S22 stress component (oriented normal to the stress line) and of the resulting linearized stresses, as shown in Figure 4. ![]() The following output is also written to a file called linearStress.rpt: ********************************************************************************
Statically Equivalent Linear Stress Distribution across a Section,
written on Thu Sep 09 11:20:19 2010
Source
-------
ODB: Job-1.odb
Step: Step-1
Frame: Increment 1: Step Time = 1.000
Linearized Stresses for stress line 'Section_A_B'
Start point, Point 1 - (18.429651260376, 26.8930339813232, 0)
End point, Point 2 - (22.0184745788574, 30.3756923675537, 0)
Number of intervals - 40
------------------------------- COMPONENT RESULTS ------------------------------
S11 S22 S33 S12
0 -462.376 1550.19 1450.75 74.7673
0.125021 -453.722 1542.06 1445.35 74.6265
0.250043 -445.068 1533.93 1439.95 74.4865
0.375064 -436.413 1525.8 1434.55 74.3473
0.500086 -427.759 1517.67 1429.15 74.2089
0.625107 -419.114 1509.55 1423.76 74.0714
0.750128 -410.46 1501.42 1418.36 73.9345
0.87515 -401.806 1493.3 1412.96 73.7983
1.00017 -393.152 1485.17 1407.56 73.663
1.12519 -384.497 1477.04 1402.16 73.5284
1.25021 -375.842 1468.92 1396.76 73.3946
1.37524 -367.187 1460.79 1391.37 73.2615
1.50026 -358.531 1452.67 1385.97 73.1293
1.62528 -348.574 1443.22 1379.7 72.8307
1.7503 -333.79 1428.85 1370.22 71.77
1.87532 -319.007 1414.48 1360.74 70.7052
2.00034 -304.227 1400.1 1351.26 69.6367
2.12536 -289.448 1385.72 1341.78 68.5648
2.25039 -274.656 1371.33 1332.29 67.4908
2.37541 -259.847 1356.91 1322.81 66.4061
2.50043 -245.037 1342.49 1313.32 65.3195
2.62545 -230.228 1328.07 1303.83 64.2284
2.75047 -215.421 1313.64 1294.34 63.1328
2.87549 -200.613 1299.2 1284.84 62.0327
3.00051 -185.807 1284.76 1275.34 60.9282
3.12554 -171.002 1270.32 1265.84 59.8191
3.25056 -156.197 1255.88 1256.34 58.7056
3.37558 -149.216 1248.82 1251.71 57.583
3.5006 -143.031 1242.52 1247.58 56.4609
3.62562 -136.844 1236.21 1243.45 55.34
3.75064 -130.658 1229.91 1239.32 54.2204
3.87566 -124.471 1223.61 1235.19 53.1021
4.00069 -118.283 1217.31 1231.06 51.985
4.12571 -112.095 1211.02 1226.93 50.8691
4.25073 -105.907 1204.72 1222.8 49.7545
4.37575 -99.7185 1198.42 1218.67 48.6412
4.50077 -93.5296 1192.13 1214.55 47.529
4.62579 -87.3403 1185.83 1210.42 46.4182
4.75081 -81.1506 1179.54 1206.3 45.3086
4.87584 -74.9605 1173.25 1202.17 44.2002
5.00086 -68.77 1166.96 1198.05 43.0931
Membrane
(Average) Stress -253.255 1342.83 1317.88 62.6971
Bending
Stress, Point 1 -209.122 218.613 140.324 0
Membrane plus
Bending, Point 1 -462.376 1561.45 1458.2 62.6971
Bending
Stress, Point 2 184.485 -206.054 -140.324 0
Membrane plus
Bending, Point 2 -68.77 1136.78 1177.55 62.6971
Peak Stress,
Point 1 0 -11.2522 -7.44933 12.0701
Peak Stress,
Point 2 0 30.1809 20.4932 -19.604
------------------------------- INVARIANT RESULTS -------------------------------
Bending components in equation for computing
membrane plus bending stress invariants are: S22
Max. Mid. Min. Tresca Mises
Prin. Prin. Prin. Stress Stress
Membrane
(Average) Stress 1345.29 1317.88 -255.714 1601.01 1587.48
Membrane plus
Bending, Point 1 1563.61 1317.88 -255.418 1819.03 1709.46
Membrane plus
Bending, Point 2 1317.88 1139.6 -256.077 1573.95 1492.82
Peak Stress,
Point 1 132.875 -10.5186 -209.855 342.73 298.128
Peak Stress,
Point 2 186.936 27.7292 -119.831 306.767 265.732
The | |||||||