Coupled temperature-displacement submodeling

This problem contains basic test cases for one or more Abaqus elements and features.

This page discusses:

ProductsAbaqus/StandardAbaqus/Explicit

Elements tested

SC8RT

  • C3D8HT
  • C3D8RHT
  • C3D8RT
  • C3D4T
  • C3D6T
  • C3D8T
  • C3D20HT
  • C3D20RHT
  • C3D20RT
  • C3D20T
  • CAX4HT
  • CAX4RHT
  • CAX3T
  • CAX4T
  • CAX4T
  • CAX6MHT
  • CAX6MT
  • CAX8HT
  • CAX8RHT
  • CAX4RT
  • CAX8RT
  • CAX8T
  • CGAX3HT
  • CGAX3T
  • CGAX4HT
  • CGAX4RHT
  • CGAX4RT
  • CGAX4T
  • CGAX6MHT
  • CGAX6MT
  • CGAX8HT
  • CGAX8RHT
  • CGAX8RT
  • CGAX8T
  • CPE4HT
  • CPE4RHT
  • CPE4T
  • CPE6MHT
  • CPE6MT
  • CPE8HT
  • CPE8RHT
  • CPE8RT
  • CPE3T
  • CPE4RT
  • CPE8T
  • CPEG3T
  • CPEG4RHT
  • CPEG4RT
  • CPEG4T
  • CPEG6MHT
  • CPEG6MT
  • CPEG8T
  • CPS4RT
  • CPS3T
  • CPS4T
  • CPS6MT
  • CPS8RT
  • CPS8T

Features tested

The submodeling capability is applied to two-dimensional, three-dimensional, and axisymmetric continuum coupled temperature-displacement elements. General steps invoking the steady-state coupled temperature-displacement and the dynamic temperature-displacement procedures are used in Abaqus/Standard and Abaqus/Explicit, respectively, for both the global and submodel analyses.

Problem description

Model:

All global models have dimensions 7.0 × 7.0 in the xy or rz plane. Each submodel has dimensions 5.0 × 5.0 in the xy or rz plane and occupies the lower right-hand corner of the corresponding global model. In all but the axisymmetric models, the out-of-plane dimension is 1.0. In axisymmetric models the structure analyzed is a hollow cylinder with an outer radius of 8.0.

Material:

In Abaqus/Standard:

Young's modulus 30 × 106
Poisson's ratio 0.3
Coeff. of thermal expansion 1 × 10−5
Thermal conductivity 3.77 × 10−5
Specific heat 0.39
Density 82.9

In Abaqus/Explicit:

Young's modulus 110 × 109
Poisson's ratio 0.3
Coeff. of thermal expansion 1 × 10−3
Thermal conductivity 390
Specific heat 384
Density 8900

Loading:

In all Abaqus/Standard models a distributed flux of magnitude 0.3 is applied to the right face; in Abaqus/Explicit the flux magnitude is 0.5× 104.

Boundary and initial conditions

In the global model fixed boundary conditions u1=0 and u2=0 are prescribed on the left and bottom faces, respectively. In three-dimensional models the additional constraints u3=0 are applied to the nodes on the front and back faces. The initial temperature is zero everywhere, and fixed temperature boundary conditions are applied on the left face. In the submodel u2=0 is prescribed everywhere on the bottom face, while degrees of freedom 1, 2, and 11 for the nodes on the top and left faces are being driven by the global solution. The mass scaling technique is used in the Abaqus/Explicit models to speed-up the analysis.

Results and discussion

In the global analyses the temperature field predicted by Abaqus varies linearly in the x-direction in nonaxisymmetric models and logarithmically in the r-direction in axisymmetric models. The predicted displacement field is nonuniform in all models. The Abaqus/Standard results depicted for the temperature and x- or r-displacement contour plots are shown below. For comparison purposes the temperature and displacement solutions predicted by the submodels are also presented in the same contour plots, and excellent agreement between the global and submodel results is obtained. Hence, the amplitudes of all driven variables in the submodel analysis are identified correctly in the global analysis file output and applied at the driven nodes in the submodel analysis.

Global and submodel analyses results for 4-node plane stress elements in Abaqus/Standard are shown in Figure 1 and Figure 2.

Global and submodel Abaqus/Standard analyses results for 8-node plane strain elements are shown in Figure 3 and Figure 4.

Global and submodel Abaqus/Standard analyses results for 8-node axisymmetric elements are shown in Figure 5 and Figure 6.

Global and submodel Abaqus/Standard analyses results for 20-node brick elements (front face) are shown in Figure 7 and Figure 8.

In Abaqus/Explicit the driven temperatures and displacements in the submodel are correctly interpolated from the global analysis file output. Each of the two-dimensional, three-dimensional, or axisymmetric submodels can be driven from any global model that has the same dimensionality. The results between the global model and submodel agree extremely well.

Input files

Abaqus/Standard input files

The following input files test the steady-state fully coupled thermal-stress procedure:
pgc38ths.inp

C3D8HT elements; global analysis.

psc38ths.inp

C3D8HT elements; submodel analysis.

pgc38tys.inp

C3D8RHT elements; global analysis.

psc38tys.inp

C3D8RHT elements; submodel analysis.

pgc38trs.inp

C3D8RT elements; global analysis.

psc38trs.inp

C3D8RT elements; submodel analysis.

pgc38tfs.inp

C3D8T elements; global analysis.

psc38tfs.inp

C3D8T elements; submodel analysis.

pgc3kths.inp

C3D20HT elements; global analysis.

psc3kths.inp

C3D20HT elements; submodel analysis.

pgc3ktys.inp

C3D20RHT elements; global analysis.

psc3ktys.inp

C3D20RHT elements; submodel analysis.

pgc3ktrs.inp

C3D20RT elements; global analysis.

psc3ktrs.inp

C3D20RT elements; submodel analysis.

pgc3ktfs.inp

C3D20T elements; global analysis.

psc3ktfs.inp

C3D20T elements; submodel analysis.

pgca4ths.inp

CAX4HT elements; global analysis.

psca4ths.inp

CAX4HT elements; submodel analysis.

pgca4tys.inp

CAX4RHT elements; global analysis.

psca4tys.inp

CAX4RHT elements; submodel analysis.

pgca4trs.inp

CAX4RT elements; global analysis.

psca4trs.inp

CAX4RT elements; submodel analysis.

pgca4tfs.inp

CAX4T elements; global analysis.

psca4tfs.inp

CAX4T elements; submodel analysis.

pgca6ths.inp

CAX6MHT elements; global analysis.

psca6ths.inp

CAX6MHT elements; submodel analysis.

pgca6tfs.inp

CAX6MT elements; global analysis.

psca6tfs.inp

CAX6MT elements; submodel analysis.

pgca8ths.inp

CAX8HT elements; global analysis.

psca8ths.inp

CAX8HT elements; submodel analysis.

pgca8tys.inp

CAX8RHT elements; global analysis.

psca8tys.inp

CAX8RHT elements; submodel analysis.

pgca8trs.inp

CAX8RT elements; global analysis.

psca8trs.inp

CAX8RT elements; submodel analysis.

pgca8tfs.inp

CAX8T elements; global analysis.

psca8tfs.inp

CAX8T elements; submodel analysis.

pgca3hhs.inp

CGAX3HT elements; global analysis.

psca3hhs.inp

CGAX3HT elements; submodel analysis.

pgca3hfs.inp

CGAX3T elements; global analysis.

psca3hfs.inp

CGAX3T elements; submodel analysis.

pgca4hhs.inp

CGAX4HT elements; global analysis.

psca4hhs.inp

CGAX4HT elements; submodel analysis.

pgca4hys.inp

CGAX4RHT elements; global analysis.

psca4hys.inp

CGAX4RHT elements; submodel analysis.

pgca4hrs.inp

CGAX4RT elements; global analysis.

psca4hrs.inp

CGAX4RT elements; submodel analysis.

pgca4hfs.inp

CGAX4T elements; global analysis.

psca4hfs.inp

CGAX4T elements; submodel analysis.

pgca6hhs.inp

CGAX6MHT elements; global analysis.

psca6hhs.inp

CGAX6MHT elements; submodel analysis.

pgca6hfs.inp

CGAX6MT elements; global analysis.

psca6hfs.inp

CGAX6MT elements; submodel analysis.

pgca8hhs.inp

CGAX8HT elements; global analysis.

psca8hhs.inp

CGAX8HT elements; submodel analysis.

pgca8hys.inp

CGAX8RHT elements; global analysis.

psca8hys.inp

CGAX8RHT elements; submodel analysis.

pgca8hrs.inp

CGAX8RT elements; global analysis.

psca8hrs.inp

CGAX8RT elements; submodel analysis.

pgca8hfs.inp

CGAX8T elements; global analysis.

psca8hfs.inp

CGAX8T elements; submodel analysis.

pgce4ths.inp

CPE4HT elements; global analysis.

psce4ths.inp

CPE4HT elements; submodel analysis.

pgce4tys.inp

CPE4RHT elements; global analysis.

psce4tys.inp

CPE4RHT elements; submodel analysis.

pgce4trs.inp

CPE4RT elements; global analysis.

psce4trs.inp

CPE4RT elements; submodel analysis.

pgce4tfs.inp

CPE4T elements; global analysis.

psce4tfs.inp

CPE4T elements; submodel analysis.

pgce4tfsg.inp

CPE4T elements; SUBMODEL, GLOBAL ELSET; global analysis.

psce4tfsg.inp

CPE4T elements; SUBMODEL, GLOBAL ELSET; submodel analysis.

pgce6ths.inp

CPE6MHT elements; global analysis.

psce6ths.inp

CPE6MHT elements; submodel analysis.

pgce6tfs.inp

CPE6MT elements; global analysis.

psce6tfs.inp

CPE6MT elements; submodel analysis.

pgce8ths.inp

CPE8HT elements; global analysis.

psce8ths.inp

CPE8HT elements; submodel analysis.

pgce8tys.inp

CPE8RHT elements; global analysis.

psce8tys.inp

CPE8RHT elements; submodel analysis.

pgce8trs.inp

CPE8RT elements; global analysis.

psce8trs.inp

CPE8RT elements; submodel analysis.

pgce8tfs.inp

CPE8T elements; global analysis.

psce8tfs.inp

CPE8T elements; submodel analysis.

pgcg3tfs.inp

CPEG3T elements; global analysis.

pscg3tfs.inp

CPEG3T elements; submodel analysis.

pgcg4tys.inp

CPEG4RHT elements; global analysis.

pscg4tys.inp

CPEG4RHT elements; submodel analysis.

pgcg4trs.inp

CPEG4RT elements; global analysis.

pscg4trs.inp

CPEG4RT elements; submodel analysis.

pgcg4tfs.inp

CPEG4T elements; global analysis.

pscg4tfs.inp

CPEG4T elements; submodel analysis.

pgcg4tfsg.inp

CPEG4T elements; SUBMODEL, GLOBAL ELSET; global analysis.

pscg4tfsg.inp

CPEG4T elements; SUBMODEL, GLOBAL ELSET; submodel analysis.

pgcg6ths.inp

CPEG6MHT elements; global analysis.

pscg6ths.inp

CPEG6MHT elements; submodel analysis.

pgcg6tfs.inp

CPEG6MT elements; global analysis.

pscg6tfs.inp

CPEG6MT elements; submodel analysis.

pgcg8tfs.inp

CPEG8T elements; global analysis.

pscg8tfs.inp

CPEG8T elements; submodel analysis.

pgcs4trs.inp

CPS4RT elements; global analysis.

pscs4trs.inp

CPS4RT elements; submodel analysis.

pgcs4tfs.inp

CPS4T elements; global analysis.

pscs4tfs.inp

CPS4T elements; submodel analysis.

pgcs6tfs.inp

CPS6MT elements; global analysis.

pscs6tfs.inp

CPS6MT elements; submodel analysis.

pgcs8trs.inp

CPS8RT elements; global analysis.

pscs8trs.inp

CPS8RT elements; submodel analysis.

pgcs8tfs.inp

CPS8T elements; global analysis.

pscs8tfs.inp

CPS8T elements; submodel analysis.

Abaqus/Explicit input files

submcoupledtmp_g_c3d4t_xpl.inp

C3D4T elements; global analysis.

submcoupledtmp_s_c3d4t_xpl.inp

C3D4T elements; submodel analysis.

submcoupledtmp_g_c3d6t_xpl.inp

C3D6T elements; global analysis.

submcoupledtmp_s_c3d6t_xpl.inp

C3D6T elements; submodel analysis.

submcoupledtmp_g_c3d8rt_xpl.inp

C3D8RT elements; global analysis.

submcoupledtmp_s_c3d8rt_xpl.inp

C3D8RT elements; submodel analysis.

submcoupledtmp_g_sc8rt_xpl.inp

SC8RT elements; global analysis.

submcoupledtmp_s_sc8rt_xpl.inp

SC8RT elements; submodel analysis.

submcoupledtmp_g_cax3t_xpl.inp

CAX3T elements; global analysis.

submcoupledtmp_s_cax3t_xpl.inp

CAX3T elements; submodel analysis.

submcoupledtmp_g_cax4rt_xpl.inp

CAX4RT elements; global analysis.

submcoupledtmp_s_cax4rt_xpl.inp

CAX4RT elements; submodel analysis.

submcoupledtmp_g_cax6mt_xpl.inp

CAX6MT elements; global analysis.

submcoupledtmp_s_cax6mt_xpl.inp

CAX6MT elements; submodel analysis.

submcoupledtmp_g_cpe3t_xpl.inp

CPE3T elements; global analysis.

submcoupledtmp_s_cpe3t_xpl.inp

CPE3T elements; submodel analysis.

submcoupledtmp_g_cpe4rt_xpl.inp

CPE4RT elements; global analysis.

submcoupledtmp_s_cpe4rt_xpl.inp

CPE4RT elements; submodel analysis.

submcoupledtmp_g_cpe6mt_xpl.inp

CPE6MT elements; global analysis.

submcoupledtmp_s_cpe6mt_xpl.inp

CPE6MT elements; submodel analysis.

submcoupledtmp_g_cps3t_xpl.inp

CPS3T elements; global analysis.

submcoupledtmp_s_cps3t_xpl.inp

CPS3T elements; submodel analysis.

submcoupledtmp_g_cps4rt_xpl.inp

CPS4RT elements; global analysis.

submcoupledtmp_s_cps4rt_xpl.inp

CPS4RT elements; submodel analysis.

submcoupledtmp_g_cps6mt_xpl.inp

CPS6MT elements; global analysis.

submcoupledtmp_s_cps6mt_xpl.inp

CPS6MT elements; submodel analysis.

Figures

Figure 1. Temperature contours in global and submodels: 4-node plane stress.

Figure 2. ux contours in global and submodels: 4-node plane stress.

Figure 3. Temperature contours in global and submodels: 8-node plane strain.

Figure 4. ux contours in global and submodels: 8-node plane strain.

Figure 5. Temperature contours in global and submodels: 8-node axisymmetric.

Figure 6. ur contours in global and submodels: 8-node axisymmetric.

Figure 7. Temperature contours in global and submodels: 20-node brick.

Figure 8. ux contours in global and submodels: 20-node brick.