Typical Applications
Fluid pipe connector elements are typically used to simulate the junction between two or more fluid pipe elements (see Fluid Pipe Elements) such as a valve, a T-connector, or a diffuser.
Products Abaqus/Standard Typical ApplicationsFluid pipe connector elements are typically used to simulate the junction between two or more fluid pipe elements (see Fluid Pipe Elements) such as a valve, a T-connector, or a diffuser. Choosing an Appropriate ElementSeveral fluid pipe connector element types are available. For two-dimensional and axisymmetric analyses, use element type FPC2D2. For three-dimensional analyses, use element type FPC3D2. Assigning a Material Definition to a Set of Fluid Pipe Connector ElementsYou must associate a material definition with each connector element section property. The material that is defined for the fluid pipe connector section refers to the fluid that is flowing through the connector. The properties that must be defined for the fluid are the pore fluid density and viscosity. For the viscosity definition fluid pipe connector elements support both Newtonian and non-Newtonian fluids. The supported non-Newtonian fluids are power law, Bingham Plastic, and Herschel-Bulkley models (see Viscosity). Multiple Fluid FlowAbaqus allows the use of multiple fluids in an analysis, up to a maximum of four fluid types. This capability is useful in situations where the spatial distribution of the different fluid types is known (that is, precomputed) at all times during the analysis. In other words, the type of fluid at each node in the domain is known at all times during the analysis. The definition of multiple fluids in an analysis involves associating each fluid with a unique integer and a specific predefined field variable. This integer acts as a fluid identifier. You can utilize this fluid identifier to specify the properties (for example, viscosity) of each fluid. The field variable associated with a fluid type allows you to predefine the fluid type at a node as a function of time using amplitude definitions or as functions of both time and space utilizing user subroutine UFIELD or USDFLD. You specify a value for each field variable that is associated with a fluid identifier at each node. It is recommended that you specify a value for the field variable ( ) such that . Abaqus assigns the fluid type at an integration point to be the one for which the field variable has the maximum value at that point. If all field variables have the same numerical value at an integration point, the first fluid (fluid identifier 1) is assumed to be active. Fluid Pipe Connector EquationsThe geometry of a fluid pipe connector element is expressed in terms of hydraulic area and hydraulic diameter. The hydraulic diameter is expressed in terms of the cross-sectional area (A) and the wetted perimeter (P) as . A fluid pipe connector element is defined by two nodes. Unlike the fluid pipe elements, the geometric length of fluid pipe connector elements plays no role in the fluid equilibrium equations and, therefore, the nodes are usually modeled as being coincident. The viscous pressure loss across a fluid pipe connector in Abaqus/Standard is given as
The mass flow rate through the connector can be related to the fluid and pipe parameters as . Specifying the Fluid Pipe Connector Geometry and Connector LossAbaqus/Standard supports four different types of fluid pipe connector loss terms:
Specifying Standard Connector Loss TermsThe standard fluid pipe connector uses constant bidirectional loss terms and that you define. If the flow is from local node 1 to node 2, the total pressure loss is Specifying the Connector Loss Based on Reynold's NumberThis method utilizes the Hooper 2K parameters or Darby 3K parameters. The K values for different types of connectors and valves can be found in the literature. The 2K parameter or 3K parameter methods are sometimes preferable to constant bidirectional loss terms because they include a Reynold's number dependence. Irrespective of the flow direction, a flow-dependent loss value is computed during the analysis and is given by Specifying the Connector Loss with a User SubroutineYou can specify bidirectional connector loss terms ( and ) for fluid pipe connector elements using user subroutine UFLUIDCONNECTORLOSS. As with the standard connector, if the flow is from local node 1 to node 2, the total pressure loss is Specifying the Laminar Flow Transition for Low Reynolds Number FlowsYou can specify the laminar flow transition parameter that is used to switch flow computations from a purely laminar, linear formulation to a nonlinear iterative formulation. The Hooper 2K and Darby 3K methods include Reynold's number dependence. Therefore, the laminar flow transition can be used only when the connector loss is defined by either one of these types. This ensures better convergence when the flow in the connector is zero or close to zero in magnitude. The default laminar transition flow Reynold's number is 1.0. User subroutine UFLUIDCONNECTORLOSS is not called when the computed Re is less than the default or specified value. Specifying the Control Valve BehaviorYou can control the flow in the connector by simulating the presence of a control valve. By default, no valve behavior is defined and the fluid is fully flowing. When activated, user subroutine UFLUIDCONNECTORVALVE is called to determine the valve opening whose value must be between 0.0 and 1.0. The valve control option is valid only with the Hooper 2K and Darby 3K connector loss methods. This is because the flow in the connector can be set to zero, and the use of laminar flow transition gives better convergence behavior under these conditions. Specifying Initial and Prescribed ConditionsYou can define a field distribution over the nodes of the fluid pipe connector elements. Specifying Loads and Boundary ConditionsFluid pipe connector elements allow for the specification of pressure boundary conditions and volumetric flow rates at the nodes. The flow rate must be a nonzero value. At a particular node, either a pressure or flow rate can be specified but not both. Since the fluid pipe connectors do not use the geometric length in the fluid equilibrium equations, gravity loads are not supported for these elements. |