![]() The stress line ![]() ![]() When you click Stress Linearization dialog box, Abaqus/CAE creates an X–Y plot of the S22 stress component (oriented normal to the stress line) and of the resulting linearized stresses, as shown in Figure 4. or in the![]() The following output is also written to a file called linearStress.rpt: ******************************************************************************** Statically Equivalent Linear Stress Distribution across a Section, written on Thu Sep 09 11:20:19 2010 Source ------- ODB: Job-1.odb Step: Step-1 Frame: Increment 1: Step Time = 1.000 Linearized Stresses for stress line 'Section_A_B' Start point, Point 1 - (18.429651260376, 26.8930339813232, 0) End point, Point 2 - (22.0184745788574, 30.3756923675537, 0) Number of intervals - 40 ------------------------------- COMPONENT RESULTS ------------------------------ S11 S22 S33 S12 0 -462.376 1550.19 1450.75 74.7673 0.125021 -453.722 1542.06 1445.35 74.6265 0.250043 -445.068 1533.93 1439.95 74.4865 0.375064 -436.413 1525.8 1434.55 74.3473 0.500086 -427.759 1517.67 1429.15 74.2089 0.625107 -419.114 1509.55 1423.76 74.0714 0.750128 -410.46 1501.42 1418.36 73.9345 0.87515 -401.806 1493.3 1412.96 73.7983 1.00017 -393.152 1485.17 1407.56 73.663 1.12519 -384.497 1477.04 1402.16 73.5284 1.25021 -375.842 1468.92 1396.76 73.3946 1.37524 -367.187 1460.79 1391.37 73.2615 1.50026 -358.531 1452.67 1385.97 73.1293 1.62528 -348.574 1443.22 1379.7 72.8307 1.7503 -333.79 1428.85 1370.22 71.77 1.87532 -319.007 1414.48 1360.74 70.7052 2.00034 -304.227 1400.1 1351.26 69.6367 2.12536 -289.448 1385.72 1341.78 68.5648 2.25039 -274.656 1371.33 1332.29 67.4908 2.37541 -259.847 1356.91 1322.81 66.4061 2.50043 -245.037 1342.49 1313.32 65.3195 2.62545 -230.228 1328.07 1303.83 64.2284 2.75047 -215.421 1313.64 1294.34 63.1328 2.87549 -200.613 1299.2 1284.84 62.0327 3.00051 -185.807 1284.76 1275.34 60.9282 3.12554 -171.002 1270.32 1265.84 59.8191 3.25056 -156.197 1255.88 1256.34 58.7056 3.37558 -149.216 1248.82 1251.71 57.583 3.5006 -143.031 1242.52 1247.58 56.4609 3.62562 -136.844 1236.21 1243.45 55.34 3.75064 -130.658 1229.91 1239.32 54.2204 3.87566 -124.471 1223.61 1235.19 53.1021 4.00069 -118.283 1217.31 1231.06 51.985 4.12571 -112.095 1211.02 1226.93 50.8691 4.25073 -105.907 1204.72 1222.8 49.7545 4.37575 -99.7185 1198.42 1218.67 48.6412 4.50077 -93.5296 1192.13 1214.55 47.529 4.62579 -87.3403 1185.83 1210.42 46.4182 4.75081 -81.1506 1179.54 1206.3 45.3086 4.87584 -74.9605 1173.25 1202.17 44.2002 5.00086 -68.77 1166.96 1198.05 43.0931 Membrane (Average) Stress -253.255 1342.83 1317.88 62.6971 Bending Stress, Point 1 -209.122 218.613 140.324 0 Membrane plus Bending, Point 1 -462.376 1561.45 1458.2 62.6971 Bending Stress, Point 2 184.485 -206.054 -140.324 0 Membrane plus Bending, Point 2 -68.77 1136.78 1177.55 62.6971 Peak Stress, Point 1 0 -11.2522 -7.44933 12.0701 Peak Stress, Point 2 0 30.1809 20.4932 -19.604 ------------------------------- INVARIANT RESULTS ------------------------------- Bending components in equation for computing membrane plus bending stress invariants are: S22 Max. Mid. Min. Tresca Mises Prin. Prin. Prin. Stress Stress Membrane (Average) Stress 1345.29 1317.88 -255.714 1601.01 1587.48 Membrane plus Bending, Point 1 1563.61 1317.88 -255.418 1819.03 1709.46 Membrane plus Bending, Point 2 1317.88 1139.6 -256.077 1573.95 1492.82 Peak Stress, Point 1 132.875 -10.5186 -209.855 342.73 298.128 Peak Stress, Point 2 186.936 27.7292 -119.831 306.767 265.732 The |