References

This section lists texts and papers that should provide a starting point for obtaining additional information on topics of interest.

  1. Agah-Tehrani A.EHLeeRLMallett, and ETOnat, The Theory of Elastic-Plastic Deformation at Finite Strain with Induced Anisotropy Modeled as Combined Isotropic-Kinematic Hardening,” Metal Forming Report, Rensselaer Polytechnic Institute, Troy, New York, 1986.
  2. Al-Ani A. M. and JWHancock, J-Dominance of Short Cracks in Tension and Bending,” Journal of the Mechanics and Physics of Solids, vol. 39, pp. 2343, 1991.
  3. Allard A. and NAtalla, Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, John Wiley & Sons, Second Edition, 2009.
  4. Allik H.The Application of Finite and Infinite Elements to Problems in Structural Acoustics, Computational Mechanics '91: Proceedings of the International Conference on Computational Engineering Science, ICES Publications, Atlanta, Georgia, 1991.
  5. Anagnastopoulos S. A.Response Spectrum Techniques for Three Component Earthquake Design,” Earthquake Engineering and Structural Dynamics, vol. 9, pp. 459476, 1981.
  6. Aoki S.KKishimoto, and MSakjata, Crack Tip Stress and Strain Singularity in Thermally Loaded Elastic-Plastic Material,” Transactions of the ASME, Journal of Applied Mechanics, vol. 48, no. 2, pp. 428429, 1981.
  7. Aravas N.On the Numerical Integration of a Class of Pressure-Dependent Plasticity Models,” International Journal for Numerical Methods in Engineering, vol. 24, pp. 13951416, 1987.
  8. Aravas N. and ECAifantis, On the Geometry of Slip and Spin in Finite Plastic Deformation,” International Journal of Plasticity, vol. 7, pp. 141160, 1991.
  9. Arruda E. M. and MCBoyce, A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials,” Journal of the Mechanics and Physics of Solids, vol. 41, no. 2, pp. 389412, 1993.
  10. ASCE 4-98, Seismic Analysis of Safety-Related Nuclear Structures and Commentary, American Society of Civil Engineers, 2000.
  11. Ashwell D. G. and RHGallagher, Finite Elements for Thin Shells and Curved Members, John Wiley and Sons, London, 1976.
  12. Astley R. J.GJMacaulay, and JPCoyette, Mapped Wave Envelope Elements for Acoustical Radiation and Scattering,” Journal of Sound and Vibration, vol. 170, pp. 97118, 1994.
  13. Atalla N.RPanneton, and PDebergue, A Mixed Displacement Pressure Formulation for Poroelastic Materials,” Journal of the Acoustical Society of America, vol. 104, no. 3, pp. 14441452, 1998.
  14. Atalla N.M. AHamdi, and RPanneton, Enhanced Weak Integral Formulation for the Mixed (u, p) Poroelastic Equations,” Journal of the Acoustical Society of America, vol. 109, no. 6, pp. 30653068, 2001.
  15. Atomic Energy Commission Regulatory Guide 1.60, Design Response Spectra for Seismic Design of Nuclear Power Plants.
  16. Atomic Energy Commission Regulatory Guide 1.92, Combining Modal Responses.
  17. Barlow J.Optimal Stress Locations in Finite Element Models,” International Journal for Numerical Methods in Engineering, vol. 10, pp. 243251, 1976.
  18. Barnett D. M. and RJAsaro, The Fracture Mechanics of Slit-Like Cracks in Anisotropic Elastic Media,” Journal of the Mechanics and Physics of Solids, vol. 20, pp. 353366, 1972.
  19. Bathe K. J. and CAAlmeida, A Simple and Effective Pipe Elbow Element—Linear Analysis,” Transactions of the ASME, Journal of Applied Mechanics, vol. 47, no. 1, 1980.
  20. Bathe K. J. and ENDvorkin, A Continuum Mechanics-Based Four-Node Shell Element for General Non-Linear Analysis,” International Journal of Computer Aided Engineering Software, vol. 1, 1984.
  21. Bathe K. J. and ELWilson, Large Eigenvalue Problems in Dynamic Analysis,” Proceedings of the ASCE, EM6, 98, pp. 14711485, 1972.
  22. Batoz J. L.KJBathe, and LWHo, A Study of Three-Node Triangular Plate Bending Elements,” International Journal for Numerical Methods in Engineering, vol. 15, pp. 17711821, 1980.
  23. Bayliss A.MGunzberger, and ETurkel, Boundary Conditions for the Numerical Solution of Elliptic Equations in Exterior Regions,” SIAM Journal of Applied Mathematics., vol. 42, no. 2, pp. 430451, 1982.
  24. Bear J.Dynamics of Fluids in Porous Media, American Elsevier Publishing Company, Dover, New York, 1972.
  25. Belytschko T.Survey of Numerical Methods and Computer Programs for Dynamic Structural Analysis,” Nuclear Engineering and Design, vol. 37, pp. 2334, 1976.
  26. Belytschko T. and LPBindeman, Assumed Strain Stabilization of the Eight Node Hexahedral Element,” Computer Methods in Applied Mechanics and Engineering, vol. 105, pp. 225260, 1993.
  27. Belytschko T. and TBlack, Elastic Crack Growth in Finite Elements with Minimal Remeshing,” International Journal for Numerical Methods in Engineering, vol. 45, pp. 601620, 1999.
  28. Belytschko T.JILin, and CSTsay, Explicit Algorithms for the Nonlinear Dynamics of Shells,” Computer Methods in Applied Mechanics and Engineering, vol. 43, pp. 251276, 1984.
  29. Belytschko T.BLWong, and HYChiang, Advances in One-Point Quadrature Shell Elements,” Computer Methods in Applied Mechanics and Engineering, vol. 96, pp. 93107, 1992.
  30. Bergan P. B.GHorrigmoeBKrakeland, and THSoreide, Solution Techniques for Non-Linear Finite Element Problems,” International Journal for Numerical Methods in Engineering, vol. 12, pp. 16771696, 1978.
  31. Bergström J. S. and MCBoyce, Constitutive Modeling of the Large Strain Time-Dependent Behavior of Elastomers,” Journal of the Mechanics and Physics of Solids, vol. 46, pp. 931954, 1998.
  32. Betegón C. and JWHancock, Two-Parameter Characterization of Elastic-Plastic Crack-Tip Fields,” Journal of Applied Mechanics, vol. 58, pp. 104110, 1991.
  33. Bettess P.CEmson, and TCChaim, A New Mapped Infinite Element for Exterior Wave Problems, Numerical Methods in Coupled Systems, Edited by R. W. Lewis et al, John WIley & Sons, 1984.
  34. Bilby B. A.GEGoldthorpe, and ICHoward, A Finite Element Investigation of the Effect of Specimen Geometry on the Fields of Stress and Strain at the Tip of Stationary Cracks, Size Effects in Fracture, Institution of Mechanical Engineers, London, pp. 37–46, 1986.
  35. Bilkhu S. Private communication, 1987.
  36. Biot M. A.Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low Frequency Range. II. Higher Frequency Range,” Journal of the Acoustical Society of America, vol. 28, no. 2, pp. 168191, 1956.
  37. Budiansky B. and JLSanders, On the `Best' First-Order Linear Shell Theory, Progress in Applied Mechanics, The Prager Anniversary Volume, Macmillan, London, pp. 129–140, 1963.
  38. Burnett D. S.A Three-Dimensional Acoustic Infinite Element Based on a Prolate Spheroidal Multipole Expansion,” Journal of the Acoustical Society of America, vol. 96(5), pp. 27982816, 1994.
  39. Calladine C. R.A Microstructural View of the Mechanical Properties of Saturated Clay,” Geotechnique, vol. 21, no. 4, pp. 391415.
  40. Chen W. F. and DJHan, Plasticity for Structural Engineers, Springer-Verlag, New York, 1988.
  41. Chu C. C. and ANeedleman, Void Nucleation Effects in Biaxially Stretched Sheets,” Journal of Engineering Materials and Technology, vol. 102, pp. 249256, 1980.
  42. Clough R. W. and JPenzien, Dynamics of Structures, McGraw-Hill, New York, 1975.
  43. Coffin L. F., Jr.The Flow and Fracture of a Brittle Material,” Journal of Applied Mechanics, vol. 72, pp. 233248, 1950.
  44. Cohen M. and PCJennings, Silent Boundary Methods for Transient Analysis (in Computational Methods for Transient Analysis), Ed. T. Belytschko and T. R. J. Hughes, Elsevier, 1983.
  45. Cormeau I.Numerical Stability in Quasi-Static Elasto-Visco Plasticity,” International Journal for Numerical Methods in Engineering, vol. 9, pp. 109127, 1975.
  46. Cotterell B. and JRRice, Slightly Curved or Kinked Cracks,” International Journal of Fracture, vol. 16, pp. 155169, 1980.
  47. Cowper G. R.Gaussian Quadrature for Triangles,” International Journal for Numerical Methods in Engineering, vol. 7, pp. 405408, 1973.
  48. Crank J.The Mathematics of Diffusion, Clarendon Press, Oxford, 1956.
  49. Crisfield M. A.A Fast Incremental/Iteration Solution Procedure that Handles `Snap-Through',” Computers and Structures, vol. 13, pp. 5562, 1981.
  50. Crisfield M. A.Snap-Through and Snap-Back Response in Concrete Structures and the Dangers of Under-Integration,” International Journal for Numerical Methods in Engineering, vol. 22, pp. 751767, 1986.
  51. Czekanski A.NEl-Abbasi, and SAMeguid, Optimal Time Integration Parameters for Elastodynamic Contact Problems,” Communications in Numerical Methods in Engineering, vol. 17, pp. 379384, 2001.
  52. Debergue P.RPanneton, and NAtalla, Boundary Conditions for the Weak Formulation of the Mixed (u, p) Poroelasticity Problem,” Journal of the Acoustical Society of America, vol. 106, no. 5, pp. 23832390, 1999.
  53. DeGroot S. R. and PMazur, Non Equilibrium Thermodynamics, North Holland Publishing Company, North Holland, Amsterdam, 1962.
  54. Desai C. S.Finite Element Methods for Flow in Porous Media in Finite Elements in Fluids, vol. 1, Wiley, London, pp. 157–181, 1975.
  55. Deshpande V. S. and NAFleck, Isotropic Constitutive Model for Metallic Foams,” Journal of the Mechanics and Physics of Solids, vol. 48, pp. 12531276, 2000.
  56. Dodge W. G. and SEMoore, Stress Indices and Flexibility Factors for Moment Loadings on Elbows and Curved Pipes,” Welding Research Council Bulletin, no. 179, December 1972.
  57. Drucker D. C. and WPrager, Soil Mechanics and Plastic Analysis or Limit Design,” Quarterly of Applied Mathematics, vol. 10, pp. 157165, 1952.
  58. Du Z. -Z. and JWHancock, The Effect of Non-Singular Stresses on Crack-Tip Constraint,” Journal of the Mechanics and Physics of Solids, vol. 39, pp. 555567, 1991.
  59. Dupuis G.Stabilité Elastique des Structures Unidimensionelles,” ZAMP, vol. 20, pp. 94106, 1969.
  60. Eleiche A. S. M.A Literature Survey of the Combined Effects of Strain Rate and Elevated Temperature on the Mechanical Properties of Metals,” Air Force Materials Laboratories, Report AFML–TR–72–125, 1972.
  61. Elguedj T.AGravouil, and ACombescure, Appropriate Extended Functions for X-FEM Simulation of Plastic Fracture Mechanics,” Computer Methods in Applied Mechanics and Engineering, vol. 195, pp. 501515, 2006.
  62. Engelmann B. E. and RGWhirley, A New Explicit Shell Element Formulation for Impact Analysis (in Computational Aspects of Contact, Impact and Penetration), Ed. R. F. Kulak and L. E. Schwer, Elmepress International, 1990.
  63. Engquist B. and AMajda, Absorbing Boundary Conditions for the Numerical Simulation of Waves,” Mathematics of Computation, vol. 31, pp. 629651, 1977.
  64. Ericsson T. and ARuhe, The Spectral Transformation Lanczos Method for the Numerical Solution of Large Sparse Generalized Symmetric Eigenvalue Problems,” Mathematics of Computation, vol. 35, pp. 12511268, 1980.
  65. Erdogan F. and GCSih, On the Crack Extension in Plates under Plane Loading and Transverse Shear,” Journal of Basic Engineering, vol. 85, pp. 519527, 1963.
  66. Everstine G.A Symmetric Potential Formulation for Fluid-Structure Interaction,” Journal of Sound and Vibration, vol. 79, pp. 157160, 1981.
  67. Faltinsen O. M.Sea Loads on Ships and Offshore Structures, Cambridge University Press, 1990.
  68. Farin G.Curves and Surfaces for Computer Aided Geometric Design, Academic Press, San Diego, Second Edition, 1990.
  69. Farin G.Smooth Interpolation to Scattered 3D Data in Surfaces in Computer Aided Geometric Design, Barnhill, R. E. and Boehm, W., eds., North-Holland, pp. 43–63, 1983.
  70. Flanagan D. P. and TBelytschko, A Uniform Strain Hexahedron and Quadrilateral with Orthogonal Hourglass Control,” International Journal for Numerical Methods in Engineering, vol. 17, pp. 679706, 1981.
  71. Flugge W.Tensor Analysis and Continuum Mechanics, Springer-Verlag, New York, 1972.
  72. Fung Y. C.KFronek, and PPatitucci, Pseudoelasticity of Arteries and the Choice of its Mathematical Expressions,” American Journal of Physiology, vol. 237, pp. H620H631, 1979.
  73. Gao H.MAbbudi, and DMBarnett, Interfacial Crack-Tip Fields in Anisotropic Elastic Solids,” Journal of the Mechanics and Physics of Solids, vol. 40, pp. 393416, 1992.
  74. Gasser T. C.GAHolzapfel, and RWOgden, Hyperelastic Modelling of Arterial Layers with Distributed Collagen Fibre Orientations,” Journal of the Royal Society Interface, vol. 3, pp. 1535, 2006.
  75. Geers T. L. and KSHunter, An Integrated Wave-Effects Model for an Underwater Explosion Bubble,” Journal of the Acoustical Society of America, vol. 111(4), pp. 15841601, 2002.
  76. Geers T. L. and CKPark, Optimization of the G & H Bubble Model,” Shock and Vibration, vol. 12(1), pp. 38, 2005.
  77. Gibson L. J. and MFAshby, The Mechanics of Three-Dimensional Cellular Materials,” Proceedings of the Royal Society, London, A 382, pp. 4359, 1982.
  78. Gibson L. J.MFAshbyGSSchajer, and CIRobertson, The Mechanics of Two-Dimensional Cellular Materials,” Proceedings of the Royal Society, London, A 382, pp. 2542, 1982.
  79. Gordon J. L.OUTCUR: An Automated Evaluation of Two-Dimensional Finite Element Stresses According to ASME Section III Stress Requirements,” Paper No. 76–WA/PVP-16, ASME Winter Annual Meeting, December 1976.
  80. Govindarajan S. M. JAHurtado, and WVMars, Simulation of Mullins Effect and Permanent Set in Filled Elastomers Using Multiplicative Decomposition,” Proceedings of the 5th European Conference for Constitutive Models for Rubber, Paris, September 2007.
  81. Green A. E. and PMNaghdi, A General Theory of an Elastic-Plastic Continuum,” Archives of Rational Mechanics and Analysis, vol. 17
  82. Grimes R. G.JGLewis, and HDSimon, A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems,” SIAM Journal on Matrix Analysis and Applications, vol. 15, pp. 228272, 1994.
  83. Grote M. and JKeller, On Nonreflecting Boundary Conditions,” Journal of Computational Physics, vol. 122, pp. 231243, 1995.
  84. Gudehus G.Finite Elements in Geomechanics, Wiley and Sons, 1977.
  85. Gupta A. K.Response Spectrum Method in Seismic Analysis and Design of Structures, Blackwell Scientific Publications, 1990.
  86. Gurson A. L.Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Materials,” Journal of Engineering Materials and Technology, vol. 99, pp. 215, 1977.
  87. Han S. and OABauchau, Nonlinear Three-Dimensional Beam Theory for Flexible Multibody Dynamics,” Multibody System Dynamics, vol. 34, pp. 211242, 2015.
  88. Hansen H. T.Nonlinear Static and Dynamic Analysis of Slender Structures Subjected to Hydrodynamic Loading, University of Trondheim, Norway, 1988.
  89. Hayashi K. and SNemat-Nasser, Energy-Release Rate and Crack Kinking under Combined Loading,” Journal of Applied Mechanics, vol. 48, pp. 520524, 1981.
  90. He M. -Y. and JWHutchinson, Kinking of a Crack out of an Interface: Tabulated Solution Coefficients, Harvard University, Cambridge, Massachusetts, Division of Applied Mechanics, 1989.
  91. Hegemier G. A.Evaluation of Models for MX Siting, Volume II—Reinforced Concrete Models, Systems, Science and Software, Report SSS–R–80–4155, La Jolla, California, 1979.
  92. Hegemier G. A. and KJCheverton, Evaluation of Reinforced Concrete Models for Nuclear Power Plant Application, EPRI, Palo Alto, California, 1980.
  93. Hibbitt H. D.Some Follower Forces and Load Stiffness,” International Journal for Numerical Methods in Engineering, vol. 14, pp. 937941, 1979.
  94. Hibbitt H. D.Special Structural Elements of Piping Analysis, Pressure Vessels and Piping; Analysis and Computers, ASME, New York, 1974.
  95. Hibbitt H. D. and BIKarlsson, Analysis of Pipe Whip, EPRI, Report NP–1208, 1979.
  96. Hilber  H. M.TJRHughes, and RLTaylor, Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Engineering and Structural Dynamics, vol. 5, pp. 283292, 1977.
  97. Hilber H. M. and TJRHughes, Collocation, Dissipation and `Overshoot' for Time Integration Schemes in Structural Dynamics,” Earthquake Engineering and Structural Dynamics, vol. 6, pp. 99117, 1978.
  98. Hilderbrand F. B.Introduction to Numerical Analysis, McGraw Hill, 1974.
  99. Hillerborg A.MModeer, and PEPetersson, Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements,” Cement and Concrete Research, vol. 6, pp. 773782, 1976.
  100. Hjelm H. E.Elastoplasticity of Grey Cast Iron, FE-Algorithms and Biaxial Experiments, Ph.D. Thesis, Chalmers University of Technology, Division of Solid Mechanics, Sweden, 1992.
  101. Hjelm H. E.Yield Surface for Grey Cast Iron under Biaxial Stress,” Journal of Engineering Materials and Technology, vol. 116, pp. 148154, 1994.
  102. Hoenig A.Near-Tip Behavior of a Crack in a Plane Anisotropic Elastic Body,” Engineering Fracture Mechanics, vol. 16, pp. 393403, 1982.
  103. Holman J. P.Heat Transfer, McGraw-Hill, 1990.
  104. Holzapfel G. A.TCGasser, and RWOgden, A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models,” Journal of Elasticity, vol. 61, pp. 148, 2000.
  105. Hottel H. C. and ADSarofim, Radiative Transfer, McGraw-Hill, 1967.
  106. Hughes T. J. R. and ABrooks, A Theoretical Framework for Petrov-Galerkin Methods with Discontinuous Weighting Functions in Finite Elements in Fluids, vol. 4, edited by R. H. Gallagher, D. H. Norrie, J. T. Oden, and O. C. Zienkiewicz, John Wiley & Sons, 1982.
  107. Hughes T. J. R. and WKLiu, Nonlinear Finite Element Analysis of Shells, Part I: Three-Dimensional Shells, California Institute of Technology, Pasadena, California, 1980.
  108. Hughes T. J. R.RLTaylor, and WKanoknukulchai, A Simple and Efficient Element for Plate Bending,” International Journal for Numerical Methods in Engineering, vol. 11, no. 10, pp. 15291543, 1977.
  109. Hughes T. J. R. and TETezduyar, Finite Elements based upon Mindlin Plate Theory with Particular Reference to the Four-Node Bilinear Isoparametric Element,” Journal of Applied Mechanics, pp. 587596, 1981.
  110. Hughes T. J. R. and JWinget, Finite Rotation Effects in Numerical Integration of Rate Constitutive Equations Arising in Large Deformation Analysis,” International Journal for Numerical Methods in Engineering, vol. 15, pp. 18621867, 1980.
  111. Humphrey J. D.Mechanics of Arterial Wall: Review and Directions,” Critical Reviews in Biomedical Engineering, vol. 23, pp. 1162, 1995.
  112. Hurtado J. A. and KBose, Comments on: 'On the T-Stress Extraction Method Used by Current Version of Abaqus',” Engineering Fracture Mechanics, vol. 291, 2023.
  113. Hurty W. C. and MFRubinstein, Dynamics of Structures, Prentice-Hall, Englewood Cliffs, New Jersey, 1964.
  114. Hussain M. A.SLPu, and JUnderwood, Strain-Energy-Release Rate for a Crack under Combined Mode I and Mode II,” ASTM-STP-560, pp. 228, 1974.
  115. Hutchinson J. W.Singular Behaviour at the End of a Tensile Crack in a Hardening Material,” Journal of the Mechanics and Physics of Solids, vol. 16, pp. 1331, 1968.
  116. Hutchinson J. W. and ZSuo, Mixed Mode Cracking in Layered Materials,” Advances in Applied Mechanics, vol. 29, pp. 63191, 1992.
  117. Irons B. and SAhmad, Techniques of Finite Elements, Ellis Horwood Limited, Halsted Press, John Wiley and Sons, Chichester, England, 1980.
  118. Ikeda T.Fundamentals of Piezoelectricity, Oxford University Press, New York, 1990.
  119. Johnson D.Surface to Surface Radiation in the Program TAU, Taking Account of Multiple Reflection, United Kingdom Atomic Energy Authority Report ND-R-1444(R), 1987.
  120. Johnson D. L.JKoplik, and RDashen, Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media,” Journal of Fluid Mechanics, vol. 176, pp. 379402, 1987.
  121. Kaliske M. and HRothert, On the Finite Element Implementation of Rubber-like Materials at Finite Strains,” Engineering Computations, vol. 14, no. 2, pp. 216232, 1997.
  122. Kawabata S.YYamashitaHOoyama, and SYoshida, Mechanism of Carbon-Black Reinforcement of Rubber Vulcanizate,” Rubber Chemistry and Technology, vol. 68, no. 2, pp. 311329, 1995.
  123. Der Kiureghian A.A Response Spectrum Method For Random Vibration Analysis of MDF Systems,” Earthquake Engineering and Structural Dynamics, vol. 9, pp. 419435, 1981.
  124. Kennedy J. M.TBelytschko, and JILin, Recent Developments in Explicit Finite Element Techniques and Their Applications to Reactor Structures,” Nuclear Engineering and Design, vol. 96, pp. 124, 1986.
  125. Kfouri A. P.Some Evaluations of the Elastic T-Term Using Eshelby's Method,” International Journal of Fracture, vol. 30, pp. 301315, 1986.
  126. Kilian H.-G.Equation of State of Real Networks,” Polymer, vol. 22, pp. 209216, 1981.
  127. Kilian H.-G.HFEnderle, and KUnseld, The Use of the van der Waals Model to Elucidate Universal Aspects of Structure-Property Relationships in Simply Extended Dry and Swollen Rubbers,” Colloid and Polymer Science, vol. 264, pp. 866876, 1986.
  128. Kleiber M.HAntúnezTDHien, and PKowalczyk, Parameter Sensitivity in Nonlinear Mechanics, John Wiley & Sons, 1997.
  129. Kroenke W. C.Classification of Finite Element Stresses According to ASME Section III Stress Categories,” ASME 94th Winter Annual Meeting, November 1973.
  130. Kroenke W. C.GWAddicott, and BMHinton, Interpretation of Finite Element Stresses According to ASME Section III,” Second National Congress on Pressure Vessels and Piping, June 1975.
  131. Kumar V.MDGerman, and CFShih, An Engineering Approach for Elastic-Plastic Fracture Analysis, Electric Power Research Institute Report NP-1931, Project 1237-1, Electric Power Research Institute, Palo Alto, CA, 1981.
  132. Kwata K.SAsai, and HTakeda, A Solution for the IAEA International Piping Benchmark Problem, Century Research Corporation, Tokyo, 1978.
  133. Lamb H.Hydrodynamics, Dover Publications, New York, 1945.
  134. Larsson S. G. and AJCarlsson, Influence of Non-Singular Stress Terms and Specimen Geometry on Small-Scale Yielding at Crack Tips in Elastic-Plastic Material,” Journal of the Mechanics and Physics of Solids, vol. 21, pp. 263278, 1973.
  135. Lee J. and GLFenves, Plastic-Damage Model for Cyclic Loading of Concrete Structures,” Journal of Engineering Mechanics, vol. 124, no. 8, pp. 892900, 1998.
  136. Lemaitre J. and J.-LChaboche, Mechanics of Solid Materials, Cambridge University Press, 1990.
  137. Leppington F.Inverse Scattering in Modern Methods in Analytical Acoustics, edited by D. G. Crighton, et al., Springer Verlag, pp. 551–564, 1992.
  138. Lianis G.Small Deformations Superposed on an Initial Large Deformation in Viscoelastic Bodies, Proceedings of the 4th International Congress on Rheology, part 2, pp. 109–119, Interscience, New York, 1965.
  139. Lin C. S. and ACScordelis, Nonlinear Analysis of RC Shells of General Form,” ASCE, Journal of Structural Engineering, vol. 101, pp. 523538, 1975.
  140. Lindholm J. S. and RLBesseny, A Survey of Rate Dependent Strength Properties of Metals,” Air Force Materials Laboratory, Report AFML–TR–69–119, 1969.
  141. Lubliner J.JOliverSOller, and EOñate, A Plastic-Damage Model for Concrete,” International Journal of Solids and Structures, vol. 25, no. 3, pp. 229326, 1989.
  142. Lysmer J. and RLKuhlemeyer, Finite Dynamic Model for Infinite Media,” Journal of the Engineering Mechanics Division of the ASCE, pp. 859877, August 1969.
  143. MacNeal R. H.A Simple Quadrilateral Shell Element,” Computers and Structures, vol. 8, pp. 175183, 1978.
  144. MacNeal R. H.Derivation of Element Stiffness Matrices by Assumed Strain Distributions,” Nuclear Engineering and Design, vol. 70, pp. 312, 1982.
  145. Maiti S. K.LJGibson, and MFAshby, Deformation and Energy Absorption Diagrams for Cellular Solids,” Acta Metallurgica, vol. 32, no. 11, pp. 19631975, 1984.
  146. Maiti S. K. and RASmith, Comparison of the Criteria for Mixed Mode Brittle Fracture Based on the Preinstability Stress-Strain Field, Part I: Slit and Elliptical Cracks under Uniaxial Tensile Loading,” International Journal of Fracture, vol. 23, pp. 281295, 1983.
  147. Mang H. A.Symmetricability of Pressure Stiffness Matrices for Shells with Loaded Free Edges,” International Journal for Numerical Methods in Engineering, vol. 15, pp. 981990, 1980.
  148. Matthies H. and GStrang, The Solution of Nonlinear Finite Element Equations,” International Journal for Numerical Methods in Engineering, vol. 14, pp. 16131626, 1979.
  149. Melenk J. and IBabuska, The Partition of Unity Finite Element Method: Basic Theory and Applications,” Computer Methods in Applied Mechanics and Engineering, vol. 39, pp. 289314, 1996.
  150. Menétrey Ph. and KJWilliam, Triaxial Failure Criterion for Concrete and its Generalization, ACI Structural Journal, 92:311–18, May/June, 1995.
  151. Mills-Curran W. C.Calculation of Eigenvector Derivatives for Structures with Repeated Eigenvalues,” AIAA Journal, vol. 26, no. 7, pp. 867871, 1988.
  152. Mitalas G. P. and DGStephenson, Fortran IV Programs to Calculate Radiant Interchange Factors,” National Research Council of Canada, Division of Building Research, DBR-25, 1966.
  153. Morman K. N.Analytical Prediction of Elastomeric Mount Dynamic Characteristics, Report L2143-2, Ford Engineering Computer Systems, Car Engineering, Dearborn, Michigan, 1979.
  154. Morman K. N. and JCNagtegaal, Finite Element Analysis of Sinusoidal Small-Amplitude Vibrations in Deformed Viscoelastic Solids. Part I: Theoretical Development,” International Journal of Numerical Methods in Engineering, vol. 19, pp. 10791103, 1983.
  155. Morse P. and KIngard, Theoretical Acoustics, McGraw-Hill, 1968.
  156. Mullins L.Effect of Stretching on the Properties of Rubber,” Journal of Rubber Research, vol. 16, pp. 275289, 1947.
  157. Murff J. D. Private communication, 1982.
  158. Murthy D. V. and RTHaftka, Derivatives of Eigenvalues and Eigenvectors of a General Complex Matrix,” International Journal of Numerical Methods in Engineering, vol. 26, pp. 293311, 1988.
  159. Nagtegaal J. C.DMParks, and JRRice, On Numerically Accurate Finite Element Solutions in the Fully Plastic Range,” Computer Methods in Applied Mechanics and Engineering, vol. 4, pp. 153177, 1977.
  160. Nakamura T. and DMParks, Antisymmetrical 3-D Stress Field near the Crack Front of a Thin Elastic Plate,” International Journal of Solids and Structures, vol. 25, pp. 14111426, 1989.
  161. Nakamura T. and DMParks, Determination of Elastic T-Stress along Three-dimensional Crack Fronts Using an Interaction Integral,” International Journal of Solids and Structures, vol. 28, pp. 15971611, 1992.
  162. Nayak G. C. and OCZienkiewicz, A Convenient Form of Invariants and its Application to Plasticity,” Proceedings of the ASCE, Engineering Mechanics Division, vol. 98, no. St4, pp. 949954, 1972.
  163. Needleman A. and VTvergaard, Necking of Biaxially Stretched Elastic-Plastic Circular Plates,” Journal of the Mechanics and Physics of Solids, vol. 25, pp. 159183, 1977.
  164. Newman M. and APipano, Fast Modal Extraction in NASTRAN via the FEER Computer Program,” NASA TM X-2893, pp. 485506, 1973.
  165. Newmark N. M.JABlume, and KKKapur, Seismic Design Spectra for Nuclear Power Plants,” Power Division Journal, ASCE, 99, P02, Proceedings Paper 10142, pp. 287303, 1973.
  166. Nguyen H. V. and DFDurso, Absorption of Water by Fiber Webs: an Illustration of Diffusion Transport,” Tappi Journal, vol. 66, no. 12, 1983.
  167. Nishimura H.MIsobe, and KHorikawa, Higher Order Solutions of Stokes and Cnoidal Waves,” Journal of Faculty Engineering, University of Tokyo (B), vol. 34, no. 2, 1977.
  168. Nuclear Standard NE F 9-5T, Guidelines and Procedures for Design of Class 1 Elevated Temperature Nuclear System Components, United States Department of Energy, Nuclear Energy Programs, March 1981.
  169. Oden J. T.Mechanics of Elastic Structures, McGraw-Hill, New York, 1967.
  170. Oden J. T. and NKikuchi, Finite Element Methods for Constrained Problems in Elasticity, TICOM, University of Texas at Austin, Austin, Texas, 1980.
  171. Oden J. T. and NKikuchi, Finite Element Methods for Constrained Problems in Elasticity, Fifth Invitational Symposium on the Unification of Finite Elements—Finite Differences and Calculus of Variations, Edited by H. Kardestuncer, University of Connecticut, Storrs, CT.
  172. Oden J. T. and EBPires, Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact Problems in Elasticity,” Journal of Applied Mechanics, vol. 50, pp. 6773, 1983.
  173. Ogden R. W. and DGRoxburgh, A Pseudo-Elastic Model for the Mullins Effect in Filled Rubber,” Proceedings of the Royal Society of London, Series A, vol. 455, pp. 28612877, 1999.
  174. Ohayon R.Fluid-Structure Modal Analysis. New Symmetric Continuum-Based Formulations. Finite Element Applications, Proceedings of the International Conference on Advances in Numerical Methods in Engineering: Theory and Applications, Edited by G. N. Pande and J. Middleton, Martinus Nijhoff, 1987.
  175. Ohtsubo H. and OWatanabe, Flexibility and Stress Factors for Pipe Bends—An Analysis by the Finite Ring Method,” ASME paper 76–PVP–40, 1976.
  176. Palaniswamy K. and WGKnauss, On the Problem of Crack Extension in Brittle Solids under General Loading, Mechanics Today, Edited by S. Nemat-Nasser, Vol. 4, Pergamon Press, 1978.
  177. Papoulis A.Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1965.
  178. Parks D. M.The Virtual Crack Extension Method for Nonlinear Material Behavior,” Computer Methods in Applied Mechanics and Engineering, vol. 12, pp. 353364, 1977.
  179. Parks D. M.Advances in Characterization of Elastic-Plastic Crack-Tip Fields, Topics in Fracture and Fatigue, Edited by A. S. Argon, Springer Verlag, 1992.
  180. Parks D. M. and CSWhite, Elastic-Plastic Line Spring Finite Elements for Surface Cracked Plates and Shells,” Journal of Pressure Vessel Technology, vol. 104, pp. 287292, 1982.
  181. Parlett B. N.The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, New Jersey, 1980.
  182. Parlett B. N. and BNour-Omid, Toward a Black Box Lanczos Program,” Computer Physics Communications, vol. 53, pp. 169179, 1989.
  183. Parry R. H. G.Stress-Strain Behaviour of Soils, G. T. Foulis and Co., Henley, England, 1972.
  184. Penzien J. and MWatabe, Characteristic of 3-Dimensional Earthquake Ground Motions,” Earthquake Engineering and Structural Dynamics, vol. 3, pp. 365373, 1975.
  185. Powell G. and JSimons, Improved Iterative Strategy for Nonlinear Structures,” International Journal for Numerical Methods in Engineering, vol. 17, pp. 14551467, 1981.
  186. Puso M. A.A Highly Efficient Enhanced Assumed Strain Physically Stabilized Hexahedral Element,” International Journal for Numerical Methods in Engineering, vol. 49, pp. 10291064, 2000.
  187. Ramaswami S.Towards Optimal Solution Techniques for Large Eigenproblems in Structural Mechanics, Ph.D. Thesis, MIT, 1979.
  188. Ramm E.Strategies for Tracing the Nonlinear Response Near Limit Points, Nonlinear Finite Element Analysis in Structural Mechanics, Edited by E. Wunderlich, E. Stein, and K. J. Bathe, Springer-Verlag, Berlin, 1981.
  189. Remmers J. J. C.Rde Borst, and ANeedleman, The Simulation of Dynamic Crack Propagation using the Cohesive Segments Method,” Journal of the Mechanics and Physics of Solids, vol. 56, pp. 7092, 2008.
  190. Rice J. R.The Line Spring Model for Surface Flaws, The Surface Crack: Physical Problems and Computational Solutions, J. L. Sedlow, Editor, ASME, 1972.
  191. Rice J. R.Continuum Mechanics and Thermodynamics of Plasticity in Relation to Microscale Deformation Mechanisms, Constitutive Equations in Plasticity, Argon, A. S., Editor, MIT Press, Cambridge, Massachusetts, 1975.
  192. Rice J. R. and GFRosengren, Plane Strain Deformation Near a Crack Tip in a Power Law Hardening Material,” Journal of the Mechanics and Physics of Solids, vol. 16, pp. 112, 1968.
  193. Rodal J. J. A. and EAWitmer, Finite-Strain Large-Deflection Elastic-Viscoplastic Finite-Element Transient Response Analysis of Structures,” NASA contractor, Report 159874, NASA Lewis, 1979.
  194. Rots J. G. and JBlaauwendraad, Crack Models for Concrete: Discrete or Smeared? Fixed, Multi-directional or Rotating?,” HERON, vol.  34, no. 1, pp. 159, 1989.
  195. Rumpler R.Efficient Finite Element Approach for Structural-Acoustic Applications Including 3D Modelling of Sound Absorbing Porous Materials,Ph.D. Thesis,Conservatoire National des Arts et Métiers (CNAM), 2012.
  196. Sandler I. S.A New Computational Procedure for Wave Propagation Problems and a New Procedure for Non-Reflection Boundaries,” Computer Methods in Applied Mechanics and Engineering, vol. 164, pp. 223233, 1998.
  197. Scheller J. D. and RMallet, Numerical Evaluation of an Inelastic Piping Elbow Element,” ASME Paper 79–PVP–41, 1979.
  198. Schofield A. and CPWroth, Critical State Soil Mechanics, McGraw-Hill, New York, 1968.
  199. Schreyer H. L.RFKulak, and JMKramer, Accurate Numerical Solutions for Elastic-Plastic Models,” Transactions of the ASME, Journal of Pressure Vessel Technology, vol. 101, no. 3, 1979.
  200. Segalman D. J.CWGFulcherGMReese, and RVField, Jr., An Efficient Method for Calculating RMS von Mises Stress in a Random Vibration Environment,” Sandia Report, SAND98-0260, 1998.
  201. Shaw J. and SJayasuriya, Modal Sensitivities for Repeated Eigenvalues and Eigenvalue Derivatives,” AIAA Journal, vol. 30, no. 3, pp. 850852, 1991.
  202. Shih C. F. and RJAsaro, Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding,” Journal of Applied Mechanics, pp. 299316, 1988.
  203. Shih C. F.BMoran, and TNakamura, Energy Release Rate along a Three-Dimensional Crack Front in a Thermally Stressed Body,” International Journal of Fracture, vol.  30, pp. 79102, 1986.
  204. Siegel R. and JRHowell, Thermal Radiation Heat Transfer, McGraw Hill, New York, 1980.
  205. Sih G. C.Some Basic Problems in Fracture Mechanics and New Concepts,” Engineering Fracture Mechanics, vol. 5, pp. 365377, 1973.
  206. Sih G. C.PCParis, and GRIrwin, On Cracks in Rectilinearly Anisotropic Bodies,” International Journal of Fracture Mechanics, vol. 1, pp. 189202, 1965.
  207. Simo J. C.On a Fully Three-Dimensional Finite-Strain Viscoelastic Damage Model: Formulation and Computational Aspects,” Computer Methods in Applied Mechanics and Engineering, vol. 60, pp. 153173, 1987.
  208. Simo J. C.(Symmetric) Hessian for Geometrically Nonlinear Models in Solid Mechanics: Intrinsic Definition and Geometric Interpretation,” Computer Methods in Applied Mechanics and Engineering, vol. 96, no. 2, pp. 189200, 1992.
  209. Simo J. C.Algorithms for Static and Dynamic Multiplicative Plasticity that Preserve the Classical Return Mapping Schemes of the Infinitesimal Theory,” Computer Methods in Applied Mechanics and Engineering, vol. 99, pp. 61112, 1992.
  210. Simo J. C. and FArmero, Geometrically Nonlinear Enhanced Strain Mixed Methods and the Method of Incompatible Modes,” International Journal for Numerical Methods in Engineering, vol. 33, pp. 14131449, 1992.
  211. Simo J. C.DDFox, and MSRifai, On a Stress Resultant Geometrically Exact Shell Model. Part III: Computational Aspects of the Nonlinear Theory,” Computer Methods in Applied Mechanics and Engineering, vol. 79, pp. 2170, 1989.
  212. Simo J. C. and MSRifai, A Class of Assumed Strain Methods and the Method of Incompatible Modes,” International Journal for Numerical Methods in Engineering, vol. 29, pp. 15951638, 1990.
  213. Simon H. D.The Lanczos Algorithm with Partial Reorthogonalization,” Mathematics of Computation, vol. 42, pp. 115142, 1984.
  214. Skjelbreia L. and JHendrickson, Fifth Order Gravity Wave Theory, Proceedings of the 87th Coastal England Conference, Chapter Ten, den Haag, 1960.
  215. Smeby W. and ADer Kiureghian, Modal Combination Rules for Multicomponent Earthquake Excitation,” Earthquake Engineering and Structural Dynamics, vol. 12, pp. 112, 1984.
  216. Sobel L. H.In-Plane Bending of Elbows,” Computers and Structures, vol. 7, pp. 701715, 1977.
  217. Sofronis P. and RMMcMeeking, Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip,” Journal of the Mechanics and Physics of Solids, vol. 37, no. 3, pp. 317350, 1989.
  218. Song J. H.PMAAreias, and TBelytschko, A Method for Dynamic Crack and Shear Band Propagation with Phantom Nodes,” International Journal for Numerical Methods in Engineering, vol. 67, pp. 868893, 2006.
  219. Spence J.An Upper Bound Analysis for the Deformation of Smooth Pipe Bends in Creep, Second IUTAM Symposium on Creep in Structures, Goteberg, 1970, Springer Verlag, 1972.
  220. Spencer A. J. M.Constitutive Theory for Strongly Anisotropic Solids,” A. J. M. Spencer (ed.), Continuum Theory of the Mechanics of Fibre-Reinforced Composites, CISM Courses and Lectures No. 282, International Centre for Mechanical Sciences, Springer-Verlag, Wien, pp. 132, 1984.
  221. Spring K. W.Euler Parameters and the Use of Quaternion Algebra in the Manipulation of Finite Rotations: a Review,” Mechanism and Machine Theory, vol. 21, pp. 365373, 1986.
  222. Storåkers B.On Material Representation and Constitutive Branching in Finite Compressible Elasticity,” Journal of the Mechanics and Physics of Solids, vol. 34, no. 2, pp. 125145, 1986.
  223. Strang G.Linear Algebra and Its Applications, Academic Press, New York, 1976.
  224. Strang G. and GFix, An Analysis of the Finite Element Method, Prentice-Hall, New York, 1973.
  225. Stroh A. N.Dislocation and Cracks in Anisotropic Elasticity,” Philosophical Magazine, vol. 7, pp. 625646, 1958.
  226. Stroud A. H.Approximate Calculation of Multiple Integrals, Prentice-Hall, 1971.
  227. Sukumar N.ZYHuangJ.-HPrevost, and ZSuo, Partition of Unity Enrichment for Bimaterial Interface Cracks,” International Journal for Numerical Methods in Engineering, vol. 59, pp. 10751102, 2004.
  228. Sukumar N. and J.-HPrevost, Modeling Quasi-Static Crack Growth with the Extended Finite Element Method Part I: Computer Implementation,” International Journal for Solids and Structures, vol. 40, pp. 75137537, 2003.
  229. Suo Z.Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media,” Proceedings of the Royal Society, London, A, vol. 427, pp. 331358, 1990.
  230. Sutter T. R.CJCamardaJLWalsh, and HMAdelman, Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives,” AIAA Journal, vol. 26, no. 12, pp. 15061511, 1988.
  231. Symonds P. S.Survey of Methods of Analysis for Plastic Deformation of Structures under Dynamic Loading, Brown University, Division of Engineering Report, June 1967.
  232. Symonds P. S.TCTTing, and DNRobinson, Survey of Progress in Plastic Wave Propagation in Solid Bodies, Brown University, Division of Engineering Report, June 1967.
  233. Tada H.CParis, and GRIrwin, The Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, Pennsylvania, 1973.
  234. Takeda H.SAsai, and KKwata, A New Finite Element for Structural Analysis of Piping Systems, Proceedings of the Fifth SMIRT Conference, Berlin, 1979.
  235. Tanaka T. and DJFillmore, Kinetics of Swelling of Gels,” Journal of Chemical Physics, vol. 70, pp. 12141218, 1979.
  236. Tariq S. M.Evaluation of Flow Characteristics of Perforations Including Nonlinear Effects With the Finite Element Method,” SPE Production Engineering, pp.  104112, May 1987.
  237. Taylor R. L.PJBeresford, and ELWilson, A Nonconforming Element for Stress Analysis,” International Journal for Numerical Methods in Engineering, vol. 10, pp. 12111219, 1976.
  238. Theocaris P. S.A Higher Order Approximation for the T-Criterion of Fracture in Biaxial Fields,” Engineering Fracture Mechanics, vol. 19, pp. 975991, 1984.
  239. Thompson C. J.Classical Equilibrium Statistical Mechanics, Oxford University Press, New York, 1988.
  240. Timoshenko S. P.Strength of Materials; Part III, Advanced Theory and Problems, D. Van Nostrand Co., Princeton, New Jersey, Third Edition, 1956.
  241. Treloar L. R. G.The Physics of Rubber Elasticity, Clarendon Press, Oxford, Third Edition, 1975.
  242. Tvergaard V.Influence of Voids on Shear Band Instabilities under Plane Strain Condition,” International Journal of Fracture Mechanics, vol. 17, pp. 389407, 1981.
  243. Twizell E. H. and RWOgden, Non-linear Optimization of the Material Constants in Ogden's Stress-Deformation Function for Incompressible Isotropic Elastic Materials,” Journal of the Australian Mathematical Society, Series B 24, pp. 424434, 1983.
  244. Ventura G. and EBenvenuti, Equivalent Polynomials for Quadrature in Heaviside Function Enriched Elements,” International Journal for Numerical Methods in Engineering, vol. 102, pp. 688710, 2015.
  245. Wang B. P.Improved Approximate Methods for Computing Eigenvector Derivatives in Structural Dynamics,” AIAA Journal, vol. 29, no. 6, pp. 10181020, 1991.
  246. Wang Y. -Y.A Two-Parameter Characterization of Elastic-Plastic Crack Tip Fields and Application to Cleavage Fracture,” Ph.D. Thesis, Department of Mechanical Engineering, MIT, Cambridge, MA, 1991.
  247. Weber G. and LAnand, Finite Deformation Constitutive Equations and a Time Integration Procedure for Isotropic, Hyperelastic-Viscoplastic Solids,” Computer Methods in Applied Mechanics and Engineering, vol. 79, pp. 173202, 1990.
  248. Whitham G. B.Linear and Nonlinear Waves, John Wiley & Sons, 1974.
  249. Wilkinson J. H.The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.
  250. Williams M. L.On the Stress Distribution at the Base of a Stationary Crack,” Journal of Applied Mechanics, vol. 24, pp. 109114, 1957.
  251. Wilson E. L.ADer Kiureghian, and EPBayo, A Replacement for the SRSS Method in Seismic Analysis,” Earthquake Engineering and Structural Dynamics, vol. 9, pp. 187192, 1981.
  252. Wilson E. L.RLTaylorWPDoherty, and JGhaboussi, Incompatible Displacement Models in Numerical and Computer Models in Structural Mechanics, Eds. S. F. Fenves, N. Perrone, A. R. Robinson, and W. C. Schnobrich, Academic Press, New York, 1973.
  253. Wu T. H.Soil Mechanics, Allyn and Bacon, Boston, 1976.
  254. Xu G.FBower, and MOrtiz, An Analysis of Non-Planar Crack Growth under Mixed Mode Loading,” International Journal of Solids and Structures, vol. 31, pp. 21672193, 1994.
  255. Yeoh O. H.Some Forms of the Strain Energy Function for Rubber,” Rubber Chemistry and Technology, vol. 66, pp. 754771, 1993.
  256. Yu C. C. and JCHeinrich, Petrov-Galerkin Methods for the Time-Dependent Convective Transport Equation,” International Journal for Numerical Methods in Engineering, vol. 23, pp. 883902, 1986.
  257. Yu C. C. and JCHeinrich, Petrov-Galerkin Method for Multidimensional, Time-Dependent, Convective-Diffusive Equations,” International Journal for Numerical Methods in Engineering, vol. 24, pp. 22012215, 1987.
  258. Zafosnik B.ZRenJFlasker, and GMishuris, Modelling of Surface Crack Growth under Lubricated Rolling-Sliding Contact Loading,” International Journal of Fracture, vol. 134, pp. 127149, 2005.
  259. Zhong Z. H.Contact Problems with Friction, Proceedings of Numiform 89, pp. 599–606, Balkema, Rotterdam, 1989.
  260. Zienkiewicz O. C.The Finite Element Method, McGraw-Hill, London, Third Edition, 1977.
  261. Zienkiewicz O. C.CEmson, and PBettess, A Novel Boundary Infinite Element,” International Journal for Numerical Methods in Engineering, vol. 19, pp. 393404, 1983.
  262. Zienkiewicz O. C. and RNewton, Coupled Vibrations of a Structure Submerged in a Compressible Fluid, Proceedings of the International Symposium on Finite Element Techniques, Stuttgart, 1969.
  263. Zienkiewicz O. C. and GNPande, Time Dependent Multilaminate Model of Rocks—A Numerical Study of Deformation and Failure of Rock Masses,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 1, pp. 219247, 1977.