- Part geometry
-
Create a three-dimensional, deformable wire part. (Remember to use an
approximate part size that is slightly larger than the largest dimension in
your model.) Name the part Pipe
, and use the
Create Lines: Connected tool to sketch a horizontal line of
length 5.0 m. Dimension the sketch as needed to ensure that the length is
specified precisely.
- Material and
section properties
-
The pipe is made of steel with a Young's modulus of 200 × 109 Pa
and a Poisson's ratio of 0.3. Create a linear elastic material named
Steel
with these properties. You must also
define the density of the steel material (7800 kg/m3) because
eigenmodes and eigenfrequencies will be extracted in this simulation and a mass
matrix is needed for this type of procedure.
Next, create a Pipe profile. Name the profile
PipeProfile
, choose
Thin-walled as the formulation, and specify an outer
radius of 0.09 m and a wall thickness of 0.02 m for the pipe.
Create a Beam section named
PipeSection
. In the Edit Beam
Section dialog box, specify that section integration will be
performed during the analysis and assign material
Steel
and profile
PipeProfile
to the section definition.
Finally, assign section PipeSection
to the
pipe. In addition, define the beam section orientation with the approximate
-direction
as the vector (0.0, 0.0, –1.0) (the default). In this model the actual
-vector
will coincide with this approximate vector.
- Assembly and
sets
-
Create a dependent instance of the part named
Pipe
. For convenience, create geometry sets
that contain the vertices at the left and right ends of the pipe and name them
Left
and
Right
, respectively. These regions will be
used later to assign loads and boundary conditions to the model.
- Steps
-
In this simulation you need to investigate the eigenmodes and
eigenfrequencies of the steel pipe section when a 4 MN tensile load is applied.
Therefore, the analysis will be split into two steps:
Step 1. General step:
|
Apply a 4 MN tensile force.
|
Step 2. Linear perturbation step:
|
Calculate modes and frequencies.
|
Create a general static step named Pull I
with the following step description: Apply axial tensile load
of 4.0 MN
. The actual magnitude of time in this step will have
no effect on the results; unless the model includes damping or rate-dependent
material properties, “time” has no physical meaning in a static analysis
procedure. Therefore, use a time period of 1.0. Include the effects of
geometric nonlinearity, and specify an initial increment size that is 1/10 the
total step time. This causes
Abaqus/Standard
to apply 10% of the load in the first increment. Accept the default number of
allowable increments.
You need to calculate the eigenmodes and eigenfrequencies of the pipe in its
loaded state. Thus, create a second analysis step using the linear perturbation
frequency extraction procedure. Name the step Frequency
I
, and give it the following description:
Extract modes and frequencies
. Although only
the first (lowest) eigenmode is of interest, extract the first eight eigenmodes
for the model.
- Output
requests
-
The default output database output requests created by
Abaqus/CAE
for each step will suffice; you do not need to create any additional output
database output requests.
To request output to the restart file, select from the main menu bar of the Step module. For the step labeled Pull I
, write data to the
restart file every 10 increments. For the step labeled Frequency
1
, write restart data every increment.
- Loads and
boundary conditions
-
In the first step create a load named Force
that applies a 4 × 106 N tensile force to the right end of the pipe
section such that it deforms in the positive axial (global 1) direction. Forces
are applied, by default, in the global coordinate system.
The pipe section is clamped at its left end. It is also clamped at the other
end; however, the axial force must be applied at this end, so only degrees of
freedom 2 through 6 (U2, U3, UR1, UR2, and
UR3) are constrained. Apply the appropriate boundary
conditions to sets Left and Right in
the first step.
In the second step you require the natural frequencies of the extended pipe
section. This does not involve the application of any perturbation loads, and
the fixed boundary conditions are carried over from the previous general step.
Therefore, you do not need to specify any additional loads or boundary
conditions in this step.
- Mesh and job
definition
-
Seed and mesh the pipe section with 30 uniformly spaced second-order, pipe
elements (PIPE32).
Before continuing, rename the model to
Original
. This model will later form the basis
of the model used in the example discussed in
Example: restarting the pipe vibration analysis.
Create a job named Pipe
with the following
description: Analysis of a 5 meter long pipe under tensile
load
.
Save your model in a model database file, and submit the job for analysis.
Monitor the solution progress; correct any modeling errors and investigate the
source of any warning messages, taking corrective action as necessary.