Optimization Configuration File Example
Technique: NLPQLP
Technique Options:
Max Iterations: 10
Termination Accuracy: 1.0E-6
Rel Step Size: 0.0010
Min Abs Step Size: 1.0E-4
Use Central Differences: false
Max Failed Runs: 5
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Save Technique Log: false
Execution Options:
PARAM_TERMINATION_ALL: false
parallel: false
PARAM_TERMINATION_SKIP_RUNS: 0
Re-execute optimum point: true
TERMINATE_BY_FEASIBILITY: -1
PARAM_TERMINATION_CONSECUTIVE_RUNS: 1
Restore best design: true
TERMINATE_BY_THE_CLOCK_TIME: 0
TERMINATE_BY_PARAMETERS: false
ELAPSED_TIME_UNITS: 0
Use automatic scaling: false
TERMINATE_BY_ELAPSED_TIME: -1
execute subflow once: false
import at runtime: false
TERMINATE_BY_RUNS: -1
Design Parameters:
Design Variables:
Name |
"Lower Bound" |
"Upper Bound" |
"Gene Size" |
"Scale Factor" |
"*" |
0.9999 |
20.0 |
16 |
1.0 |
"*" |
0.04999 |
1.0 |
16 |
1.0 |
"***" |
0.09999 |
1.0 |
16 |
1.0 |
"*" – NumberOfCoils
"**" – WireDiameter
"***" – CoilDiameter
Output Constraints:
Name |
"Upper Bound" |
"Scale Factor" |
"Weight Factor" |
ShearStress |
0.0 |
1.0 |
1.0 |
Size |
0.0 |
1.0 |
1.0 |
Deflection |
0.0 |
1.0 |
1.0 |
SurgeFrequency |
0.0 |
1.0 |
1.0 |
Objectives:
Name |
Direction |
"Scale Factor" |
"Weight Factor" |
Weight |
minimize |
1.0 |
1.0 |
Adaptive DOE Technique Options
Technique: Adaptive DOE
Technique Options:
Number of Adaptive Iterations: 10
Number of Points per Iterations: 20
Significant Step Size: 0.01
Max Failed Runs: 5
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Use fixed random seed: false
Random Seed Value: -1
Adaptive Simulated Annealing Technique Options
Technique: ASA
Technique Options:
Max Number of Generated Designs: 10000
Number of Designs for Convergence Check: 5
Convergence Epsilon: 1.0E-8
Relative Rate of Parameter Annealing: 1.0
Relative Rate of Cost Annealing: 1.0
Relative Rate of Parameter Quenching: 1.0
Relative Rate of Cost Quenching: 1.0
Max Number of Failed Designs: 5
Init Param Temperature: 1.0
Reanneal Parameters: true
Reanneal Cost Function: true
Num of Gener Designs Before Reannealing: 1000
Num of Accepted Designs Before Reannealing: 100
Min Ratio of Accepted Designs for Reannealing: 1.0E-6
Rel Gradient Step for Param Reannealing: 0.0010
Penalty Base: 0.0
Penalty Multiplier: 1000.0
Penalty Exponent: 2
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Use fixed random seed: false
Random Seed Value: -1
Archive-Based Micro Genetic Algorithm Technique Options
Technique: AMGA
Technique Options:
Initial Size: 40
Population Size: 40
Number of Function Evaluations: 500
Archive Size Limit: 500
Pareto Size Limit: 100
Crossover Probability: 0.9
Mutation Probability: 0.5
Use optimal mutation probability: true
Crossover Distribution Index: 10.0
Mutation Distribution Index: 20.0
Use fixed random seed: false
Random seed value: -1
Initialization Mode: Random
Initialization Filename: null
Diversity Option: Crowding
DownhillSimplex Technique Options
Technique: DownhillSimplex
Technique Options:
Initial Simplex Size: 0.1
Max Iterations: 40
Evolutionary Optimization Algorithm Technique Options
Technique: Evol Technique
Technique Options:
Max Evaluations: 100
Convergence Tolerance: 0.01
Minimum Discrete Step: 0.02
Consecutive Variable Search: false
Parallel Batch Size: 10
Penalty Base: 0.0
Penalty Multiplier: 1000.0
Penalty Exponent: 2
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Use Fixed Random Seed: true
Random Seed Value: 12345
Generalized Reduced Gradient Technique Options
Technique: LSGRG
Technique Options:
Max Iterations: 10
Convergence Epsilon: 0.0010
Rel Step Size: 0.0010
Convergence Iterations: 3
Binding Constraint Epsilon: 1.0E-4
Phase 1 Objective Ratio: 1.0
Max Failed Runs: 5
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Save Technique Log: false
Hooke-Jeeves Direct Search Method Technique Options
Technique: Hooke-Jeeves
Technique Options:
Max Iterations: 10
Max Evaluations: 100
Relative Step Size: 0.5
Step Size Reduction Factor: 0.5
Termination Step Size: 1.0E-6
Penalty Base: 0.0
Penalty Multiplier: 1000.0
Penalty Exponent: 2
Max Failed Runs: 5
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Save Technique Log: false
Multi-Island Genetic Algorithm Technique Options
Technique: Multi-Island GA
Technique Options:
Sub-Population Size: 10
Number of Islands: 2
Number of Generations: 4
Rate of Crossover: 1.0
Rate of Mutation: 0.01
Rate of Migration: 0.5
Interval of Migration: 2
Elite Size: 1
Rel Tournament Size: 0.5
Penalty Base: 0.0
Penalty Multiplier: 1000.0
Penalty Exponent: 2
Max Failed Runs: 5
Failed Run Penalty Value: 1000000.0
Failed Run Objective Value: 1000000.0
Default Variable Bound (Abs Val): 1000.0
Use fixed random seed: false
Random Seed Value: -1
Multifunction Optimization System Tool Technique Options
Technique: MOST
Technique Options:
Max Iterations: 10
Convergence Tolerance: 1.0E-4
Rel Gradient Step: 1.0E-4
Min Absolute Step: 1.0E-4
Max Confirmation Runs: 5
Min Obj Change: 1.0E-10
Constraint Tolerance: 1.0E-4
Max Failed Runs: 5
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Multi-Objective Particle Swarm Technique Options
Technique: Multi-Objective Particle Swarm
Technique Options:
Maximum Iterations: 50
Number of Particles: 10
Inertia: 0.9
Global Increment: 0.9
Particle Increment: 0.9
MaxMin Velocity: 0.1
Use Fixed Random Seed: true
Random Seed Value: 12345
Non-dominated Sorting Genetic Algorithm Technique Options
Technique: NSGA-II
Technique Options:
Population Size (even value): 12
Number of Generations: 20
Crossover Probability: 0.9
Crossover Distribution Index: 10.0
Mutation Distribution Index: 20.0
Use fixed random seed: false
Random seed value: -1
Initialization Mode: Random
Initialization Filename: null
Pointer Automatic Optimizer Technique Options
Technique: Pointer
Technique Options:
Maximum allowable job time (hr): 1.0
Average analysis time (sec): 1.0
Topography type: nonlinear
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Save Technique Log: false
Use fixed random seed: false
Random Seed Value: -1
Python Optimizer Technique Options
Import/Export of technique configuration is not supported for Python Optimizer.
Sequential Quadratic Programming Technique Options
Technique: NLPQLP
Technique Options:
Max Iterations: 10
Termination Accuracy: 1.0E-6
Rel Step Size: 0.0010
Min Abs Step Size: 1.0E-4
Use Central Differences: false
Max Failed Runs: 5
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30
Stress Ratio Technique Options
Technique: Stress Ratio
Technique Options:
Max Iterations: 20
Power: 0.4
Constraint Critical Ratio: 1.0
Tolerance: 0.0
Max Failed Runs: 5
Failed Run Penalty Value: 1.0E30
Failed Run Objective Value: 1.0E30