*HEADING STEADY STATE DYNAMICS PROCEDURES - /STANDARD VERIFICATION, 2D CONNECTORS ** *NODE, NSET=NALL 1,0.0,0.0, 2,1.0,0.0, 3,2.0,0.0, 4,3.0,0.0, *NSET, NSET=FIXED 1,4 *PARAMETER C=1.0 KAXIAL1=1.0E3 U1=1.0E-3 KAXIAL2=KAXIAL1/10 U2=100*U1 F1=KAXIAL1*U1 F2=F1+KAXIAL2*(U2-U1) mF1=-F1 mF2=-F2 mU1=-U1 mU2=-U2 ** ** CONNECTOR ELEMENTS ** *ELEMENT, TYPE=CONN2D2, ELSET=AXIAL 1,1,2 2,2,3 *ELEMENT, TYPE=CONN2D2, ELSET=ACTUATOR 3,3,4 *ELSET, ELSET=CONNECTORS AXIAL,ACTUATOR ** ** MASS ELEMENTS ** *ELEMENT, TYPE=MASS, ELSET=MASS 1001,1 1002,2 1003,3 1004,4 ** ** SECTION DEFINITIONS ** *MASS, ELSET=MASS 1.0, *CONNECTOR SECTION, ELSET=AXIAL, BEHAVIOR= CB_AXIAL AXIAL *CONNECTOR SECTION, ELSET=ACTUATOR AXIAL ** ** CONNECTOR BEHAVIOR DEFINITIONS ** *CONNECTOR BEHAVIOR, NAME= CB_AXIAL *CONNECTOR ELASTICITY, COMPONENT=1, NONLINEAR , , , , *CONNECTOR DAMPING, COMPONENT=1 , ** ** BOUNDARY CONSTRAINTS (BASE STATE) ** *BOUNDARY NALL,2,3 FIXED,1, ** ** *STEP STEP-1: OBTAIN NATURAL MODES OF THE 2-D.O.F. SYSTEM ** *FREQUENCY, EIGENSOLVER=SUBSPACE, SIM=NO 2, ** *OUTPUT, FIELD *NODE OUTPUT U,RF *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *NODE PRINT U1,RF1 *EL PRINT, ELSET=AXIAL CTF1,CEF1,CRF1 CU1, *EL PRINT, ELSET=ACTUATOR CTF1,CEF1,CRF1 CU1, *NODE FILE U,RF *EL FILE, ELSET=CONNECTORS CTF,CEF,CRF,CU *END STEP ** ** *STEP STEP-2: OBTAIN STEADY STATE DYNAMIC RESPONSE IN TERMS OF PHYSICAL DEGREES OF FREEDOM - DIRECT ** USE CONNECTOR LOAD ** *STEADY STATE DYNAMICS, DIRECT, INTERVAL=EIGENFREQUENCY 12, 60 ** *CONNECTOR LOAD, LOAD CASE=1 ACTUATOR,1,-1.0 *CONNECTOR LOAD, LOAD CASE=2 ACTUATOR,1,-1.0 ** *OUTPUT, FIELD *NODE OUTPUT U,RF *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *OUTPUT, HISTORY *ELEMENT OUTPUT, ELSET=CONNECTORS CTF1,CEF1,CVF1,CRF1 CU1, *NODE PRINT, FREQUENCY=1 U1,V1,A1,PU1 CF1,RF1 *EL PRINT, ELSET=AXIAL, FREQUENCY=1 CTF1,CEF1,CVF1,CRF1, PHCTF1,PHCEF1,PHCVF1,PHCRF1 CU1,PHCU1 *EL PRINT, ELSET=ACTUATOR, FREQUENCY=1 CTF1,CEF1,CVF1,CRF1 PHCTF1,PHCEF1,PHCVF1,PHCRF1 CU1,PHCU1 *NODE FILE U,RF *EL FILE, ELSET=CONNECTORS CTF,CEF,CVF,CRF PHCTF,PHCEF,PHCVF,PHCRF CU,PHCU *END STEP ** ** *STEP STEP-3: OBTAIN STEADY STATE DYNAMIC RESPONSE IN TERMS OF PHYSICAL DEGREES OF FREEDOM - DIRECT ** USE *CONNECTOR MOTION ** *STEADY STATE DYNAMICS, DIRECT, INTERVAL=EIGENFREQUENCY 12, 60 ** *OUTPUT, FIELD *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *CONNECTOR MOTION, LOAD CASE=1 ACTUATOR,1,-0.1 *CONNECTOR MOTION, LOAD CASE=2 ACTUATOR,1,-0.1 *END STEP ** ** *STEP STEP-4: OBTAIN STEADY STATE DYNAMIC RESPONSE IN TERMS OF THE SYSTEM'S EIGENMODES - MODE BASED ** *STEADY STATE DYNAMICS, INTERVAL=EIGENFREQUENCY 12, 60 ** *OUTPUT, FIELD *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *CONNECTOR LOAD, LOAD CASE=1 ACTUATOR,1,-1.0 *CONNECTOR LOAD, LOAD CASE=2 ACTUATOR,1,-1.0 *END STEP ** ** *STEP STEP-5: OBTAIN STEADY STATE DYNAMIC RESPONSE IN TERMS OF THE SYSTEM'S EIGENMODES - SUBSPACE PROJECTION ** *STEADY STATE DYNAMICS, SUBSPACE PROJECTION, INTERVAL=EIGENFREQUENCY 12, 60 ** *OUTPUT, FIELD *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *CONNECTOR LOAD, LOAD CASE=1 ACTUATOR,1,-1.0 *CONNECTOR LOAD, LOAD CASE=2 ACTUATOR,1,-1.0 *END STEP ** ** *STEP, NLGEOM STEP-6: CHANGE THE BASE STATE ** *STATIC 0.1,1.0 *CLOAD 2,1,2.0 ** *OUTPUT, FIELD *NODE OUTPUT U,RF *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *ELEMENT OUTPUT NFORC,ELEN *OUTPUT, HISTORY *ELEMENT OUTPUT, ELSET=CONNECTORS CTF1,CEF1,CVF1,CRF1 CU1,CP1 *NODE PRINT, FREQUENCY=1 U1,CF1,RF1 *EL PRINT, ELSET=AXIAL, FREQUENCY=1 CTF1,CEF1,CVF1,CRF1, CU1,CP1 *EL PRINT, ELSET=ACTUATOR, FREQUENCY=1 CTF1,CEF1,CVF1,CRF1 CU1,CP1 *NODE FILE U,RF *EL FILE, ELSET=CONNECTORS CTF,CEF,CVF,CRF,CP,CU NFORC, *END STEP ** ** REPEAT ALL STEPS ** *STEP STEP-7: OBTAIN NATURAL MODES OF THE 2-D.O.F. SYSTEM ** *FREQUENCY, EIGENSOLVER=SUBSPACE, SIM=NO 2, ** *OUTPUT, FIELD *NODE OUTPUT U,RF *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *NODE PRINT U1,RF1 *EL PRINT, ELSET=AXIAL CTF1,CEF1,CRF1 CU1, *EL PRINT, ELSET=ACTUATOR CTF1,CEF1,CRF1 CU1, *NODE FILE U,RF *EL FILE, ELSET=CONNECTORS CTF,CEF,CRF,CU *END STEP ** ** *STEP STEP-8: OBTAIN STEADY STATE DYNAMIC RESPONSE IN TERMS OF PHYSICAL DEGREES OF FREEDOM - DIRECT ** USE CONNECTOR LOAD ** *STEADY STATE DYNAMICS, DIRECT, INTERVAL=EIGENFREQUENCY 12, 60 ** *CONNECTOR LOAD, LOAD CASE=1 ACTUATOR,1,-1.0 *CONNECTOR LOAD, LOAD CASE=2 ACTUATOR,1,-1.0 ** *OUTPUT, FIELD *NODE OUTPUT U,RF *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *OUTPUT, HISTORY *ELEMENT OUTPUT, ELSET=CONNECTORS CTF1,CEF1,CVF1,CRF1 CU1, *NODE PRINT, FREQUENCY=1 U1,V1,A1,PU1 CF1,RF1 *EL PRINT, ELSET=AXIAL, FREQUENCY=1 CTF1,CEF1,CVF1,CRF1, PHCTF1,PHCEF1,PHCVF1,PHCRF1 CU1,PHCU1 *EL PRINT, ELSET=ACTUATOR, FREQUENCY=1 CTF1,CEF1,CVF1,CRF1 PHCTF1,PHCEF1,PHCVF1,PHCRF1 CU1,PHCU1 *NODE FILE U,RF *EL FILE, ELSET=CONNECTORS CTF,CEF,CVF,CRF PHCTF,PHCEF,PHCVF,PHCRF CU,PHCU *END STEP ** ** *STEP STEP-9: OBTAIN STEADY STATE DYNAMIC RESPONSE IN TERMS OF PHYSICAL DEGREES OF FREEDOM - DIRECT ** USE *CONNECTOR MOTION ** *STEADY STATE DYNAMICS, DIRECT, INTERVAL=EIGENFREQUENCY 12, 60 ** *OUTPUT, FIELD *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *CONNECTOR MOTION, LOAD CASE=1 ACTUATOR,1,-0.1 *CONNECTOR MOTION, LOAD CASE=2 ACTUATOR,1,-0.1 *END STEP ** ** *STEP STEP-10: OBTAIN STEADY STATE DYNAMIC RESPONSE IN TERMS OF THE SYSTEM'S EIGENMODES - MODE BASED ** *STEADY STATE DYNAMICS, INTERVAL=EIGENFREQUENCY 12, 60 ** *OUTPUT, FIELD *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *CONNECTOR LOAD, LOAD CASE=1 ACTUATOR,1,-1.0 *CONNECTOR LOAD, LOAD CASE=2 ACTUATOR,1,-1.0 *END STEP ** ** *STEP STEP-11: OBTAIN STEADY STATE DYNAMIC RESPONSE IN TERMS OF THE SYSTEM'S EIGENMODES - SUBSPACE PROJECTION ** *STEADY STATE DYNAMICS, SUBSPACE PROJECTION, INTERVAL=EIGENFREQUENCY 12, 60 ** *OUTPUT, FIELD *ELEMENT OUTPUT, ELSET=CONNECTORS CU,CTF *CONNECTOR LOAD, LOAD CASE=1 ACTUATOR,1,-1.0 *CONNECTOR LOAD, LOAD CASE=2 ACTUATOR,1,-1.0 *END STEP