*HEADING - VISCO-HYPERELASTICITY, TENSION, RIGID BODY MOTION W/ LINEAR PERT. STEPS, CPS4R. APPLY LOAD INSTANTANEOUSLY AND LET RELAX. DO A STATIC ROTATION TO MAKE SURE STATE VARIABLES REMAIN ENFORCED AND ROTATE. *RESTART,WRITE *NODE 1, 2,10. 3,10.,5., 4,0.,5., 99,-10.,0. *ELEMENT,TYPE=CPS4R,ELSET=ONE 1,1,2,3,4 *SOLID SECTION,ELSET=ONE,MATERIAL=BIDERMAN 1., *MATERIAL,NAME=BIDERMAN *HYPERELASTIC,N=1,MODULI=INSTANTANEOUS 27.02,1.42,0.000001 *VISCOELASTIC,TIME=PRONY 0.25,0.25,5. 0.25,0.25,10. *ELSET,ELSET=EFILE 1, *surface,NAME=SLVC ONE,S2 *surface,NAME=SLVD ONE,S4 *rigid body,analytical surface=MSTC,REF NODE=99 *surface,name=MSTC,TYPE=SEGMENTS START,10.,16. LINE,10.,-11. *rigid body,analytical surface=MSTD,REF NODE=999 *surface,name=MSTD,TYPE=SEGMENTS START,0.,-11. LINE,0.,16. *CONTACT PAIR,INTERACTION=INTER1 SLVC,MSTC SLVD,MSTD *SURFACE INTERACTION,NAME=INTER1 *ELEMENT,TYPE=SPRING1,ELSET=SPRINGX 11,1 *SPRING,ELSET=SPRINGX 1, 1., *BOUNDARY 1,2,2 2,2,2 999,1,6 99,6,6 99,2,2 **NODE 1 WITH FIXED BC IN DIR. 2 AND IN CONTACT WITH MAIN SURFACE MSTD **CONFLICTS WITH THE NORMAL CONTACT CONSTRAINT IN STEP 5 WHEN THE CONTACT **SURFACES ARE ROTATED. OVERCONSTRAINT CHECKS GIVE A WARNING AND CHANGE **THE CONTACT STATUS TO OPEN AUTOMATICALLY TO AVOID OVERCONSTRAINT. THIS **CAUSES CONVERGENCE PROBLEM. THE FOLLOWING KEYWORD IS BEING ADDED TO AVOID **THIS PROBLEM. IN THIS CASE NODE 1 AND REF. NODE 999 FOR MAIN SURFACE **MSTD ARE COINCIDENT AND THIS OVERCONSTRAINT SHOULD NOT CAUSE ANY PROBLEM. **OVERCONSTRAINT CHECKS WILL BE IMPROVED LATER ON TO DETECT AND IGNORE **THESE CASES (WHEN SECONDARY AND MAIN NODES ARE COINCIDENT). *CONSTRAINT CONTROLS,NO CHECKS *STEP,PERT ** Step 1: Initial linear perturbation: pull right rigid surface in dof 1 *STATIC *BOUNDARY 1,2 999,1,6 99,2 99,6 99,1,1,.1 *EL PRINT S,E *CONTACT PRINT CSTRESS, CDISP, *END STEP *STEP,NLGEOM,INC=25 ** Step 2: Pull specimen through right rigid surface *STATIC .1,1. *BOUNDARY 99,1,1,2. *END STEP *STEP,NLGEOM,INC=25 ** Step 3: Viscoelastic stress relaxation *VISCO 5.,50.,2.,10., *BOUNDARY 99,1,1,10. *END STEP *STEP,PERT ** Step 4: Linear perturbation: pull right rigid surface in dof 1 *STATIC *BOUNDARY,OP=NEW 1,2 999,1,6 99,2 99,6 99,1,1,.1 *EL PRINT S,E *CONTACT PRINT CSTRESS, CDISP, *END STEP *STEP,NLGEOM,INC=200 ** Step 5: Rotate the model 90 deg through the 2 rigid surfaces *STATIC 30.,90.,1.,30. *BOUNDARY,OP=NEW 1,2,2 999,1,2 999,6,6,1.5707963 99,2,2 99,1,1,10. 99,6,6,1.5707963 *END STEP *STEP,PERT ** Step 6: Linear perturbation: pull top (right) rigid surface in dof 2 *STATIC *BOUNDARY,OP=NEW 1,1 999,1,6 99,1 99,6 99,2,2,.1 *EL PRINT S,E *CONTACT PRINT CSTRESS, CDISP, *END STEP *STEP,NLGEOM ** Step 7: Viscoelastic stress relaxation *VISCO 10.,100. *BOUNDARY,OP=NEW 1,1,1 999,1,2 999,6,6,1.5707963 99,2,2 99,1,1,10. 99,6,6,1.5707963 *END STEP *STEP,PERT ** Step 8: Multiple load cases: pull top (right) rigid surface in dof 2 *STATIC *LOAD CASE,name=uniaxial-tension-1 *BOUNDARY,OP=NEW 1,1 999,1,6 99,1 99,6 99,2,2,.1 *END LOAD CASE *LOAD CASE,name=uniaxial-tension-2 *BOUNDARY,OP=NEW 1,1 999,1,6 99,1 99,6 99,2,2,.2 *END LOAD CASE *LOAD CASE,name=uniaxial-tension-3 *BOUNDARY,OP=NEW 1,1 999,1,6 99,1 99,6 99,2,2,.3 *END LOAD CASE *EL PRINT S,E *CONTACT PRINT CSTRESS, CDISP, *OUTPUT,FIELD,VARIABLE=PRESELECT *NODE OUTPUT,VARIABLE=PRESELECT *ELEMENT OUTPUT,VARIABLE=PRESELECT *END STEP