Elastic materials

This problem contains basic test cases for one or more Abaqus elements and features.

This page discusses:

Products Abaqus/Standard Abaqus/Explicit

Linear orthotropic elastic materials

Elements tested

C3D8

CPE4

CPS4

Problem description

Material:

Engineering constants Stiffness coefficients
E 1 1000. D 1111 1000.
E 2 1000. D 1122 0.
E 3 1000. D 2222 1010.1
ν 12 0. D 1133 0.
ν 13 0. D 2233 101.01
ν 23 0.1 D 3333 1010.1
G 12 100. D 1212 100.
G 13 100. D 1313 100.
G 23 100. D 2323 100.

Results and discussion

The results agree well with exact analytical or approximate solutions.

Linear anisotropic elastic material

Elements tested

C3D8

Problem description

Material:

Stiffness coefficients
D 1111 2.24 × 1011
D 1122 4.79 × 105
D 2222 1.23 × 1011
D 1133 4.21 × 105
D 2233 4.74 × 105
D 3333 1.21 × 1011
D 1112 1 × 106
D 2212 2 × 106
D 3312 3 × 106
D 1212 7.69 × 1010
D 1113 4 × 106
D 2213 5 × 106
D 3313 6 × 106
D 1213 7 × 106
D 1313 7.69 × 1010
D 1123 8 × 106
D 2223 9 × 106
D 3323 10 × 106
D 1223 11 × 106
D 1323 12 × 106
D 2323 9 × 109

Results and discussion

The results agree well with exact analytical or approximate solutions.

Logarithmic porous elasticity

Elements tested

CAX8R

Problem description

Material:

Logarithmic bulk modulus, κ = 1.0
Poisson's ratio, ν = 0.3

(The units are not important.)

Initial conditions

Initial void ratio, e 0 = 1.08

Results and discussion

The results agree well with exact analytical or approximate solutions.

Power law–based porous elasticity

Elements tested

C3D8, C3D8R

Problem description

Material:

E r e f = 5000.0
p r e f = 3.0
p 0 = 1.0
n = 0.5
ν = 0.3
ν 0 = 0.3
m = 1.0

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Hypoelasticity

Elements tested

CPS4R

Problem description

Material:

The following dependence of E on the second strain invariant I 2 is used:

E ν I 2
637.5 0.499 4.542 × 10−3
700.3 0.499 1.6621 × 10−2
765.7 0.499 3.4418 × 10−2
840.7 0.499 5.6607 × 10−2
917.4 0.499 8.2201 × 10−2

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

mhooto2hut.inp

Nearly incompressible, uniaxial tension, CPS4R elements.

Hyperelasticity with polynomial strain energy function

Elements tested

C3D8RH

CAX8

CGAX8H

CPS4R

Problem description

Material:

Polynomial coefficients (N=1): C 10 = 80., C 01 = 20.
Compressible case: D 1 = 0.001.
Test data (N=2): Treloar's experimental data.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhecoo3hut.inp

Incompressible, uniaxial tension, C3D8RH elements.

mhecoo3ibt.inp

Incompressible, biaxial tension, C3D8RH elements.

mhecoo3gsh.inp

Incompressible, planar tension, C3D8RH elements.

mhecoo3vlp.inp

Incompressible, uniaxial tension with static linear perturbation steps containing LOAD CASE, C3D8RH elements.

mhecot3hut.inp

Incompressible, temperature-dependent, uniaxial tension, C3D8RH elements.

mhecdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhecdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhecdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhecdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhecoo2hut.inp

Incompressible, uniaxial tension, CPS4R elements.

mhecoo2ibt.inp

Incompressible, biaxial tension, CPS4R elements.

mhecoo2gsh.inp

Incompressible, planar tension, CPS4R elements.

mhecdo2hut.inp

Compressible, uniaxial tension, CPS4R elements.

mhecdo2ibt.inp

Compressible, biaxial tension, CPS4R elements.

mhecdo2gsh.inp

Compressible, planar tension, CPS4R elements.

mhecoo2spt.inp

Incompressible, pure torsion, CGAX8H elements.

mhecoo2eit.inp

Incompressible; extension, inflation, and torsion; CGAX8H elements.

mhecoo2eis.inp

Incompressible; extension, inflation, and shear; CAX8 elements.

Test data input

mhetdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhetdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhetdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhetdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhetdi3ahc.inp

Compressible, volumetric compression with initial stresses, C3D8RH elements.

Hyperelasticity with reduced polynomial strain energy function

Elements tested

C3D8RH

CPS4R

Problem description

Material:

Polynomial coefficients (N=1): C 10 = 100.
Compressible case: D 1 = 0.001.
Test data (N=6): Treloar's experimental data.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhrcoo3hut.inp

Incompressible, uniaxial tension, C3D8RH elements.

mhrcoo3ibt.inp

Incompressible, biaxial tension, C3D8RH elements.

mhrcoo3gsh.inp

Incompressible, planar tension, C3D8RH elements.

mhrcoo3vlp.inp

Incompressible, uniaxial tension with static linear perturbation steps containing LOAD CASE, C3D8RH elements.

mhrcot3hut.inp

Incompressible, temperature-dependent, uniaxial tension, C3D8RH elements.

mhrcdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhrcdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhrcdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhrcdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhrcoo2hut.inp

Incompressible, uniaxial tension, CPS4R elements.

mhrcoo2ibt.inp

Incompressible, biaxial tension, CPS4R elements.

mhrcoo2gsh.inp

Incompressible, planar tension, CPS4R elements.

mhrcdo2hut.inp

Compressible, uniaxial tension, CPS4R elements.

mhrcdo2ibt.inp

Compressible, biaxial tension, CPS4R elements.

mhrcdo2gsh.inp

Compressible, planar tension, CPS4R elements.

Test data input

mhrtdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhrtdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhrtdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhrtdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

Hyperelasticity with neo-Hookean strain energy function

Elements tested

C3D8RH

CPS4R

Problem description

Material:

Neo-Hookean coefficient: C 10 = 100.
Compressible case: D 1 = 0.001.
Test data: Treloar's experimental data.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhncoo3hut.inp

Incompressible, uniaxial tension, C3D8RH elements.

mhncoo3ibt.inp

Incompressible, biaxial tension, C3D8RH elements.

mhncoo3gsh.inp

Incompressible, planar tension, C3D8RH elements.

mhncoo3vlp.inp

Incompressible, uniaxial tension with static linear perturbation steps containing LOAD CASE, C3D8RH elements.

mhncot3hut.inp

Incompressible, temperature-dependent, uniaxial tension, C3D8RH elements.

mhncdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhncdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhncdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhncdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhncoo2hut.inp

Incompressible, uniaxial tension, CPS4R elements.

mhncoo2ibt.inp

Incompressible, biaxial tension, CPS4R elements.

mhncoo2gsh.inp

Incompressible, planar tension, CPS4R elements.

mhncdo2hut.inp

Compressible, uniaxial tension, CPS4R elements.

mhncdo2ibt.inp

Compressible, biaxial tension, CPS4R elements.

mhncdo2gsh.inp

Compressible, planar tension, CPS4R elements.

Test data input

mhntdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhntdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhntdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhntdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

Hyperelasticity with Mooney-Rivlin strain energy function

Elements tested

C3D8RH

CPS4R

Problem description

Material:

Mooney-Rivlin coefficients: C 10 = 80., C 01 = 20.
Compressible case: D 1 = 0.001.
Test data: Treloar's experimental data.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhmcoo3hut.inp

Incompressible, uniaxial tension, C3D8RH elements.

mhmcoo3ibt.inp

Incompressible, biaxial tension, C3D8RH elements.

mhmcoo3gsh.inp

Incompressible, planar tension, C3D8RH elements.

mhmcoo3vlp.inp

Incompressible, uniaxial tension with static linear perturbation steps containing LOAD CASE, C3D8RH elements.

mhmcot3hut.inp

Incompressible, temperature-dependent, uniaxial tension, C3D8RH elements.

mhmcdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhmcdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhmcdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhmcdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhmcoo2hut.inp

Incompressible, uniaxial tension, CPS4R elements.

mhmcoo2ibt.inp

Incompressible, biaxial tension, CPS4R elements.

mhmcoo2gsh.inp

Incompressible, planar tension, CPS4R elements.

mhmcdo2hut.inp

Compressible, uniaxial tension, CPS4R elements.

mhmcdo2ibt.inp

Compressible, biaxial tension, CPS4R elements.

mhmcdo2gsh.inp

Compressible, planar tension, CPS4R elements.

Test data input

mhmtdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhmtdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhmtdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhmtdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

Hyperelasticity with Yeoh strain energy function

Elements tested

C3D8RH

CPS4R

Problem description

Material:

Yeoh coefficients: C 10 = 100., C 20 = −1., C 30 = 0.01.
Compressible case: D 1 = 0.001.
Test data: Treloar's experimental data.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhycoo3hut.inp

Incompressible, uniaxial tension, C3D8RH elements.

mhycoo3ibt.inp

Incompressible, biaxial tension, C3D8RH elements.

mhycoo3gsh.inp

Incompressible, planar tension, C3D8RH elements.

mhycoo3vlp.inp

Incompressible, uniaxial tension with static linear perturbation steps containing LOAD CASE, C3D8RH elements.

mhycot3hut.inp

Incompressible, temperature-dependent, uniaxial tension, C3D8RH elements.

mhycdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhycdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhycdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhycdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhycoo2hut.inp

Incompressible, uniaxial tension, CPS4R elements.

mhycoo2ibt.inp

Incompressible, biaxial tension, CPS4R elements.

mhycoo2gsh.inp

Incompressible, planar tension, CPS4R elements.

mhycdo2hut.inp

Compressible, uniaxial tension, CPS4R elements.

mhycdo2ibt.inp

Compressible, biaxial tension, CPS4R elements.

mhycdo2gsh.inp

Compressible, planar tension, CPS4R elements.

Test data input

mhytdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhytdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhytdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhytdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

Hyperelasticity with Ogden strain energy function

Elements tested

C3D8RH

CAX8

CGAX8H

CPS4R

Problem description

Material:

Ogden coefficients (N=2): μ 1 = 160., α 1 = 2., μ 2 = 40., α 2 = −2.
Compressible case: D 1 = 0.001.
Test data (N=2): Treloar's experimental data.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhgcoo3hut.inp

Incompressible, uniaxial tension, C3D8RH elements.

mhgcoo3ibt.inp

Incompressible, biaxial tension, C3D8RH elements.

mhgcoo3gsh.inp

Incompressible, planar tension, C3D8RH elements.

mhgcoo3vlp.inp

Incompressible, uniaxial tension with static linear perturbation steps containing LOAD CASE, C3D8RH elements.

mhgcot3hut.inp

Incompressible, temperature-dependent, uniaxial tension, C3D8RH elements.

mhgcdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhgcdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhgcdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhgcdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhgcoo2hut.inp

Incompressible, uniaxial tension, CPS4R elements.

mhgcoo2ibt.inp

Incompressible, biaxial tension, CPS4R elements.

mhgcoo2gsh.inp

Incompressible, planar tension, CPS4R elements.

mhgcdo2hut.inp

Compressible, uniaxial tension, CPS4R elements.

mhgcdo2ibt.inp

Compressible, biaxial tension, CPS4R elements.

mhgcdo2gsh.inp

Compressible, planar tension, CPS4R elements.

mhgcoo2spt.inp

Incompressible, pure torsion, CGAX8H elements.

mhgcoo2eit.inp

Incompressible; extension, inflation, and torsion; CGAX8H elements.

mhgcoo2eis.inp

Incompressible; extension, inflation, and shear; CAX8 elements.

Test data input

mhgtdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhgtdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhgtdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhgtdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

Hyperelasticity with Arruda-Boyce strain energy function

Elements tested

C3D8RH

CPS4R

Problem description

Material:

Arruda-Boyce coefficients: μ = 200., λ m = 5.
Compressible case: D 1 = 0.001.
Test data: Treloar's experimental data.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhacoo3hut.inp

Incompressible, uniaxial tension, C3D8RH elements.

mhacoo3ibt.inp

Incompressible, biaxial tension, C3D8RH elements.

mhacoo3gsh.inp

Incompressible, planar tension, C3D8RH elements.

mhacoo3vlp.inp

Incompressible, uniaxial tension with static linear perturbation steps containing LOAD CASE, C3D8RH elements.

mhacot3hut.inp

Incompressible, temperature-dependent, uniaxial tension, C3D8RH elements.

mhacdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhacdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhacdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhacdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhacoo2hut.inp

Incompressible, uniaxial tension, CPS4R elements.

mhacoo2ibt.inp

Incompressible, biaxial tension, CPS4R elements.

mhacoo2gsh.inp

Incompressible, planar tension, CPS4R elements.

mhacdo2hut.inp

Compressible, uniaxial tension, CPS4R elements.

mhacdo2ibt.inp

Compressible, biaxial tension, CPS4R elements.

mhacdo2gsh.inp

Compressible, planar tension, CPS4R elements.

Test data input

mhatdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhatdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhatdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhatdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

Hyperelasticity with Van der Waals strain energy function

Elements tested

C3D8RH

CPS4R

Problem description

Material:

Van der Waals coefficients: μ = 200., λ m = 10., a = 0.1, β = 0.
Compressible case: D 1 = 0.001.
Test data: Treloar's experimental data.
Test data (parameter β held constant): Treloar's experimental data, β = 0.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhvcoo3hut.inp

Incompressible, uniaxial tension, C3D8RH elements.

mhvcoo3ibt.inp

Incompressible, biaxial tension, C3D8RH elements.

mhvcoo3gsh.inp

Incompressible, planar tension, C3D8RH elements.

mhvcoo3vlp.inp

Incompressible, uniaxial tension with static linear perturbation steps containing LOAD CASE, C3D8RH elements.

mhvcot3hut.inp

Incompressible, temperature-dependent, uniaxial tension, C3D8RH elements.

mhvcdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhvcdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhvcdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhvcdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

mhvcoo2hut.inp

Incompressible, uniaxial tension, CPS4R elements.

mhvcoo2ibt.inp

Incompressible, biaxial tension, CPS4R elements.

mhvcoo2gsh.inp

Incompressible, planar tension, CPS4R elements.

mhvcdo2hut.inp

Compressible, uniaxial tension, CPS4R elements.

mhvcdo2ibt.inp

Compressible, biaxial tension, CPS4R elements.

mhvcdo2gsh.inp

Compressible, planar tension, CPS4R elements.

Test data input

mhvtdo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhvtdo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhvtdo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhvtdo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

Test data input (parameter β held constant)

mhvtbo3hut.inp

Compressible, uniaxial tension, C3D8RH elements.

mhvtbo3ibt.inp

Compressible, biaxial tension, C3D8RH elements.

mhvtbo3gsh.inp

Compressible, planar tension, C3D8RH elements.

mhvtbo3ahc.inp

Compressible, volumetric compression, C3D8RH elements.

Hyperelasticity with Marlow strain energy function

Elements tested

  • C3D8H
  • C3D8R
  • CPE4RH
  • CPE4R
  • CPS4R
  • M3D4R
  • S4R
  • SC8R
  • T2D2
  • T3D2
  • B21
  • B22
  • B31
  • B32
  • B31OS
  • B32OS
  • PIPE21
  • PIPE22
  • PIPE31
  • PIPE32

Problem description

The tests in this section verify that the results generated using the Marlow hyperelastic model with different elements agree with the test data specified in the model.

Results and discussion

The results agree well with the test data specified for the Marlow model.

Input files

Abaqus/Standard input files

marlow_uniaxial_icmp.inp

Incompressible, C3D8H elements, uniaxial tension test data.

marlow_uniaxial_cmp.inp

Compressible, C3D8H elements, uniaxial tension and volumetric compression test data.

marlow_uniaxial_pos.inp

Compressible, C3D8H elements, uniaxial tension test data, with Poisson's ratio equal to 0.47.

marlow_uniaxial_e3.inp

Compressible, C3D8H elements, uniaxial tension test data, with lateral nominal strains specified.

marlow_biaxial_icmp.inp

Incompressible, C3D8H elements, uniaxial tension test data.

marlow_biaxial_cmp.inp

Compressible, C3D8H elements, biaxial tension and volumetric compression test data.

marlow_biaxial_pos.inp

Compressible, C3D8H elements, biaxial tension test data, with Poisson's ratio equal to 0.47.

marlow_biaxial_eb.inp

Compressible, C3D8H elements, biaxial tension test data, with lateral nominal strains specified.

marlow_planar_icmp.inp

Incompressible, C3D8H elements, planar tension test data.

marlow_planar_cmp.inp

Compressible, C3D8H elements, planar tension and volumetric compression test data.

marlow_planar_pos.inp

Compressible, C3D8H elements, planar tension test data, with Poisson's ratio equal to 0.47.

marlow_planar_e3.inp

Compressible, C3D8H elements, planar tension test data, with lateral nominal strains specified.

marlow_cpe4rh_icmp.inp

Incompressible, CPE4RH elements, uniaxial tension test data.

marlow_cpe4rh_cmp.inp

Compressible, CPE4RH elements, uniaxial tension and volumetric compression test data.

marlow_cps4r_icmp.inp

Incompressible, CPS4R elements, uniaxial tension test data.

marlow_cps4r_cmp.inp

Compressible, CPS4R elements, uniaxial tension and volumetric compression test data.

marlow_s4r_icmp.inp

Incompressible, S4R elements, uniaxial tension test data.

marlow_s4r_cmp.inp

Compressible, S4R elements, uniaxial tension and volumetric compression test data.

marlow_sc8r_cmp.inp

Compressible, SC8R elements, uniaxial tension and volumetric compression test data.

marlow_m3d4r_icmp.inp

Incompressible, M3D4R elements, uniaxial tension test data.

marlow_m3d4r_cmp.inp

Compressible, M3D4R elements, uniaxial tension and volumetric compression test data.

marlow_t2d2_icmp.inp

Incompressible, T2D2 elements, uniaxial tension test data.

marlow_t2d2_cmp.inp

Compressible, T2D2 elements, uniaxial tension and volumetric compression test data.

marlow_t3d2_icmp.inp

Incompressible, T3D2 elements, uniaxial tension test data.

marlow_t3d2_cmp.inp

Compressible, T3D2 elements, uniaxial tension and volumetric compression test data.

marlow_b21_icmp.inp

Incompressible, B21 elements, uniaxial tension test data.

marlow_b21_cmp.inp

Compressible, B21 elements, uniaxial tension and volumetric compression test data.

marlow_b22_icmp.inp

Incompressible, B22 elements, uniaxial tension test data.

marlow_b22_cmp.inp

Compressible, B22 elements, uniaxial tension and volumetric compression test data.

marlow_b31_icmp.inp

Incompressible, B31 elements, uniaxial tension test data.

marlow_b31_cmp.inp

Compressible, B31 elements, uniaxial tension and volumetric compression test data.

marlow_b32_icmp.inp

Incompressible, B32 elements, uniaxial tension test data.

marlow_b32_cmp.inp

Compressible, B32 elements, uniaxial tension and volumetric compression test data.

marlow_b31os_icmp.inp

Incompressible, B31OS elements, uniaxial tension test data.

marlow_b31os_cmp.inp

Compressible, B31OS elements, uniaxial tension and volumetric compression test data.

marlow_b32os_icmp.inp

Incompressible, B32OS elements, uniaxial tension test data.

marlow_b32os_cmp.inp

Compressible, B32OS elements, uniaxial tension and volumetric compression test data.

marlow_pipe21_icmp.inp

Incompressible, PIPE21 elements, uniaxial tension test data.

marlow_pipe21_cmp.inp

Compressible, PIPE21 elements, uniaxial tension and volumetric compression test data.

marlow_pipe22_icmp.inp

Incompressible, PIPE22 elements, uniaxial tension test data.

marlow_pipe22_cmp.inp

Compressible, PIPE22 elements, uniaxial tension and volumetric compression test data.

marlow_pipe31_icmp.inp

Incompressible, PIPE31 elements, uniaxial tension test data.

marlow_pipe31_cmp.inp

Compressible, PIPE31 elements, uniaxial tension and volumetric compression test data.

marlow_pipe32_icmp.inp

Incompressible, PIPE32 elements, uniaxial tension test data.

marlow_pipe32_cmp.inp

Compressible, PIPE32 elements, uniaxial tension and volumetric compression test data.

marlow_combined_ct.inp

Incompressible, T2D2 elements, uniaxial tension and compression test data.

marlow_rebar.inp

Incompressible, S4R elements, uniaxial tension test data.

marlow_depend.inp

Incompressible, C3D8H elements, uniaxial tension test data with field dependencies.

marlow_hysteresis.inp

Incompressible, C3D8H elements, uniaxial tension test data, hysteresis analysis.

marlow_initialstress.inp

Compressible, C3D8H elements, uniaxial tension test data, with initial stress specified.

marlow_map0.inp

Incompressible, C3D8H elements, uniaxial tension test data, needed for the following map solution analysis.

marlow_map.inp

Incompressible, C3D8H elements, uniaxial tension test data, map solution analysis.

marlow_visco_c3d8h_icmp.inp

Compressible, C3D8H elements, uniaxial tension and relaxation test data.

marlow_visco_c3d8h_cmp.inp

Compressible; C3D8H elements; uniaxial tension, volumetric compression, and relaxation test data.

marlow_visco_cps4r_icmp.inp

Compressible, CPS4R elements, uniaxial tension and relaxation test data.

marlow_visco_cps4r_cmp.inp

Compressible; CPS4R elements; uniaxial tension, volumetric compression, and relaxation test data.

marlow_visco_t3d2_icmp.inp

Compressible, T3D2 elements, uniaxial tension and relaxation test data.

marlow_visco_t3d2_cmp.inp

Compressible; T3D2 elements; uniaxial tension, volumetric compression, and relaxation test data.

marlow_visco_b21_icmp.inp

Compressible, B21 elements, uniaxial tension and relaxation test data.

marlow_visco_b21_cmp.inp

Compressible; B21 elements; uniaxial tension, volumetric compression, and relaxation test data.

marlow_visco_b31_icmp.inp

Compressible, B31 elements, uniaxial tension and relaxation test data.

marlow_visco_b31_cmp.inp

Compressible; B32 elements; uniaxial tension, volumetric compression, and relaxation test data.

marlow_visco_pipe21_icmp.inp

Compressible, PIPE21 elements, uniaxial tension and relaxation test data.

marlow_visco_pipe21_cmp.inp

Compressible; PIPE21 elements; uniaxial tension, volumetric compression, and relaxation test data.

marlow_visco_pipe31_icmp.inp

Compressible, PIPE31 elements, uniaxial tension and relaxation test data.

marlow_visco_pipe31_cmp.inp

Compressible; PIPE31 elements; uniaxial tension, volumetric compression, and relaxation test data.

marlow_volumecomp.inp

Volumetric test, C3D8R elements, uniaxial tension and volumetric compression.

marlow_sx_s_c3d8r.inp

Base problem for carrying out import from Abaqus/Standard to Abaqus/Explicit, C3D8R element.

marlow_xs_s_c3d8r.inp

Import into Abaqus/Standard from marlow_sx_x_c3d8r.inp.

marlow_sx_s_cpe4r.inp

Base problem for carrying out import from Abaqus/Standard to Abaqus/Explicit, CPE4R elements.

marlow_xs_s_cpe4r.inp

Import into Abaqus/Standard from marlow_sx_x_cpe4r.inp.

marlow_sx_s_cps4r.inp

Base problem for carrying out import from Abaqus/Standard to Abaqus/Explicit, CPS4R elements.

marlow_xs_s_cps4r.inp

Import into Abaqus/Standard from marlow_sx_x_cps4r.inp.

marlow_sx_s_sc8r.inp

Base problem for carrying out import from Abaqus/Standard to Abaqus/Explicit, SC8R elements.

marlow_xs_s_sc8r.inp

Import into Abaqus/Standard from marlow_sx_x_sc8r.inp.

marlow_sx_s_t2d2.inp

Base problem for carrying out import from Abaqus/Standard to Abaqus/Explicit, T2D2 elements.

marlow_xs_s_t2d2.inp

Import into Abaqus/Standard from marlow_sx_x_t2d2.inp.

Abaqus/Explicit input files

marlow_xpl_disp.inp

Uniaxial test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, S4R, and T3D2 elements.

marlow_xpl_load.inp

Uniaxial test; load control; C3D8R, CPE4R, CPS4R, M3D4R, S4R, and T3D2 elements.

marlow_xpl_initstress.inp

Specified initial stress; C3D8R, CPE4R, CPS4R, M3D4R, S4R, and T3D2 elements.

marlow_xpl_mullins.inp

Combination with MULLINS EFFECT; cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, S4R, and T3D2 elements.

marlow_xpl_visco.inp

Creep test; C3D8R, CPE4R, CPS4R, M3D4R, S4R, and T3D2 elements.

marlow_sx_x_c3d8r.inp

Explicit dynamic continuation of marlow_sx_s_c3d8r.inp.

marlow_sx_x_cpe4r.inp

Explicit dynamic continuation of marlow_sx_s_cpe4r.inp.

marlow_sx_x_cps4r.inp

Explicit dynamic continuation of marlow_sx_s_cps4r.inp.

marlow_sx_x_sc8r.inp

Explicit dynamic continuation of marlow_sx_s_sc8r.inp.

marlow_sx_x_t2d2.inp

Explicit dynamic continuation of marlow_sx_s_t2d2.inp.

Hyperelasticity with Valanis-Landel strain energy function

Elements tested

  • C3D8
  • C3D8R
  • C3D8RH
  • CGAX8H
  • CPE4
  • CPS4R
  • M3D4R
  • S4R
  • T3D2

Problem description

The tests in this section verify that the results generated using different elements with the Valanis-Landel hyperelastic model agree with the test data specified in the model.

Results and discussion

The results agree well with the test data specified for the Valanis-Landel model.

Input files

Abaqus/Standard input files with uniaxial test data

valanis_landel_incmp_uni_c3d8rh.inp
Incompressible material, uniaxial tension, C3D8RH element.
valanis_landel_incmp_uni_cgax8h.inp
Incompressible material, torsion, CGAX8H element.

Abaqus/Standard input files with uniaxial and lateral strain test data

valanis_landel_cmp_uni_uniten_cpe4.inp
Compressible material, uniaxial tension, CPE4 element.
valanis_landel_cmp_uni_cps4r.inp
Compressible material, planar tension, CPS4R element.
valanis_landel_cmp_uni_uniten_cps4r.inp
Compressible material, uniaxial tension, CPS4R element.

Abaqus/Standard input files with uniaxial and volumetric test data

valanis_landel_cmp_univol_c3d8.inp
Compressible material, volumetric compression, C3D8 element.
valanis_landel_cmp_univol_c3d8rh.inp
Compressible material, volumetric compression, C3D8RH element.

Abaqus/Explicit input files

xpl_valanis_landel_c3d8_vol_both.inp

Tension test with both uniaxial and volumetric test data, displacement control, C3D8 element.

xpl_valanis_landel_c3d8_vol_comp.inp

Tension test with both uniaxial and compression volumetric test data, displacement control, C3D8 element.

xpl_valanis_landel_he_c3d8_ic.inp

Uniaxial tension test with initial stress (both uniaxial and lateral strain test data), displacement control, C3D8 element.

xpl_valanis_landel_he_s4r.inp

Uniaxial tension test with both uniaxial and lateral strain test data, displacement control, S4R element.

xpl_valanis_landel_ve_c3d8_vol.inp

Tension test with viscoelasticity (both uniaxial and volumetric test data), displacement control, C3D8 element.

xpl_valanis_landel_ve_cps4r.inp

Tension test with viscoelasticity (both uniaxial and lateral strain test data), displacement control, CPS4R element.

xpl_valanis_landel_ve_t3d2_vol.inp

Tension test with viscoelasticity (both uniaxial and volumetric test data), displacement control, T3D2 element.

xpl_valanis_landel_fefp_c3d8_vol_both.inp

Tension test with plasticity (both uniaxial and volumetric test data), displacement control, C3D8 element.

xpl_valanis_landel_fefp_c3d8_ic.inp

Tension test with plasticity and initial stress (both uniaxial and lateral strain test data), displacement control, C3D8 element.

xpl_valanis_landel_fefp_3d_1d.inp

Tension test with plasticity (both uniaxial and volumetric test data), displacement control, C3D8R and T3D2 elements.

xpl_valanis_landel_fefp_m3d4r.inp

Tension test with plasticity (both uniaxial and volumetric test data), displacement control, M3D4R element.

prf_network_stiff_xpl_vl.inp

Tension test with nonlinear viscoelasticity (both uniaxial and lateral strain test data), displacement control, C3D8R element.

prf_network_stiff_xpl_vl_temp_fv.inp

Tension test with nonlinear viscoelasticity (both uniaxial and lateral strain test data), displacement control, temperature and field variable dependencies, C3D8R element.

valanis_landel_sx_s_c3d8r.inp

Base job for import analysis of valanis_landel_sx_x_c3d8r.inp.

valanis_landel_sx_x_c3d8r.inp

Explicit dynamic continuation of valanis_landel_sx_s_c3d8r.inp.

valanis_landel_xs_s_c3d8r.inp

Dynamic continuation of valanis_landel_sx_x_c3d8r.inp.

valanis_landel_xx_x_c3d8r.inp

Explicit dynamic continuation of valanis_landel_sx_x_c3d8r.inp.

Hyperfoam

Elements tested

C3D8R

CPS4R

Problem description

Material:

Hyperfoam coefficients (N=3, from fit of test data):
μ 1 = −48.3291, α 1 = 3.58961, μ 2 = 26.3505, α 2 = 3.84360, μ 3 = 22.1809, α 3 = 3.34171.
Test data (N=3): Uniaxial compression, simple shear test data.

An effective Poisson's ratio of ν i = 0 is used, except for ν i = 0.10 for the biaxial test cases and varying ν i in the temperature-dependent case.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Coefficient input

mhfcdo2euc.inp

ν i = 0., uniaxial compression, CPS4R elements.

mhfcdo2fbc.inp

ν i = 0.1, biaxial compression, CPS4R elements.

mhfcdo2gsh.inp

ν i = 0., simple shear, CPS4R elements.

mhfcdo3vlp.inp

ν i = 0., uniaxial compression with linear perturbation steps containing LOAD CASE, C3D8R elements.

Test data input

mhftdo3euc.inp

ν i = 0., uniaxial compression, C3D8R elements.

mhftdo3fbc.inp

ν i = 0.1, biaxial compression, C3D8R elements.

mhftdo3gsh.inp

ν i = 0., simple shear, C3D8R elements.

mhftdo3ahc.inp

ν i = 0., volumetric compression, C3D8R elements.

mhfcdt3euc.inp

ν i = 0. − 0.06, temperature-dependent, uniaxial compression, C3D8R elements.

mhftdi3ahc.inp

ν i = 0., volumetric compression with initial stresses, C3D8R elements.

Low-density foam

Elements tested

C3D8R

CPE4R

T3D2

Problem description

The tests in this section verify that the results generated using the low-density foam model with different elements agree with the test data specified in the model.

Results and discussion

The results agree well with the rate-dependent test data specified for the low-density foam model.

Input files

Low-density foam with zero Poisson's ratio

lowdensfoam_uni.inp

Uniaxial compression with varying deformation rates; C3D8R, CPE4R, and T3D2 elements.

lowdensfoam_shr.inp

Simple shear test, C3D8R and CPE4R elements.

lowdensfoam_inistress.inp

Specified initial stress; C3D8R, CPE4R, and T3D2 elements.

xx_x1_lowdensfoam.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; uniaxial cyclic test; displacement control; C3D8R, CPE4R, and T3D2 elements.

xx_x2_lowdensfoam_n_y.inp

Continuation of xx_x1_lowdensfoam.inp with state imported.

Low-density foam with Poisson effects

lowdensfoam_poisson_uni.inp

Uniaxial compression with varying deformation rates, C3D8R and CPE4R elements.

lowdensfoam_poisson_shr.inp

Simple shear test, C3D8R and CPE4R elements.

lowdensfoam_poisson_inistress.inp

Specified initial stress, C3D8R and CPE4R elements.

xx_x1_lowdensfoam_poisson.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit, uniaxial cyclic test, displacement control, C3D8R and CPE4R elements.

xx_x2_lowdensfoam_poisson_n_y.inp

Continuation of xx_x1_lowdensfoam_poisson.inp with state imported.

Anisotropic hyperelasticity with generalized Fung strain energy function

Elements tested

  • C3D8
  • C3D8R
  • CPE4R
  • CPS4R
  • M3D4R
  • S4R

Problem description

Material:

Fung coefficients
c 26.95 × 103
b 1111 0.9925
b 1122 0.0749
b 2222 0.4180
b 1133 0.0295
b 2233 0.0193
b 3333 0.0089
b 1212 5.0
b 1313 5.0
b 2323 5.0
Compressible case
D =1.5 × 10−7 or D =1 × 10−8

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Abaqus/Standard input files

uaniso_inv_fung.inp

Uniaxial tension; built-in Fung orthotropic model verified through user subroutines UANISOHYPER_INV and UANISOHYPER_STRAIN; load control; C3D8 element.

uanisohyper_inv.f
User subroutines UANISOHYPER_INV and UANISOHYPER_STRAIN to define the Fung orthotropic model.
funganiso_mullins_ve.inp

Uniaxial tension, loading-unloading; Fung anisotropic model with Mullins effect and viscoelasticity; C3D8R, CPE4R, and CPS4R elements.

Abaqus/Explicit input files

fung_disp_xpl.inp

Uniaxial cyclic test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

fung_load_xpl.inp

Uniaxial cyclic test; load control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

fung_visco_xpl.inp

Combination with viscoelastic and Mullins effect; uniaxial cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x1_fung_disp.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; uniaxial cyclic test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_fung_disp_n_y.inp

Continuation of xx_x1_fung_disp.inp with state imported.

xx_x1_fung_load.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; uniaxial cyclic test; load control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_fung_load_n_y.inp

Continuation of xx_x1_fung_load.inp with state imported.

xx_x1_fung_visco.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; combination with viscoelastic and Mullins effect; uniaxial cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_fung_visco_n_y.inp

Continuation of xx_x1_fung_visco.inp with state imported.

Anisotropic hyperelasticity with Holzapfel-Gasser-Ogden strain energy function

Elements tested

  • C3D8R
  • C3D10
  • C3D10HS
  • CPE4R
  • CPS4R
  • M3D4R
  • S4R

Problem description

Material:

Holzapfel-Gasser-Ogden coefficients:
C 10 = 7.64., k 1 = 996.6, k 2 = 524.6, κ = 0.226.
Fiber directions (N=2):
  A 1 = ( cos γ , sin γ , 0 ) ,
  A 2 = ( cos γ , - sin γ , 0 ) ,
with γ =49.98°.
Compressible case: D = 1 × 10−6.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Abaqus/Standard input files

hgo_2fiber_std_uni.inp

Uniaxial tension; displacement control; C3D8, C3D20R, and C3D10 elements.

hgo_2fiber_std_uni_c3d10hs.inp

Uniaxial tension; displacement control; C3D8, C3D20R, and C3D10HS elements.

hgo_2fiber_uni_hybrid.inp

Uniaxial tension; displacement control; C3D8H, C3D20RH, and C3D10H elements.

hgo_2fiber_std_uniori.inp

Uniaxial tension; displacement control; orientation along nonglobal Cartesian system; C3D8, C3D20R, and C3D10 elements.

hgo_2fiber_std_uniori_c3d10hs.inp

Uniaxial tension; displacement control; orientation along nonglobal Cartesian system; C3D8, C3D20R, and C3D10HS elements.

hgo_3fiber_std_uni.inp

Uniaxial tension, displacement control, C3D8 elements.

hgo_3fiber_uni_c3d8h.inp

Uniaxial tension, displacement control, C3D8H elements.

hgo_c3d8_std_ss.inp

Simple shear, displacement control, C3D8 elements.

hgo_c3d8_std_uni.inp

Cyclic uniaxial tension, displacement control, C3D8 elements.

hgo_2fiber_ehgc.inp

Simple shear; displacement control; C3D8, C3D8R, and CPE4R elements.

hgo_2fiber_pless.inp

Simple shear; displacement control; C3D8H, C3D8RH, and CPE4RH elements.

hgo_2fiber_ps.inp

Uniaxial tension; plane stress; load control; C3D8RH, CPS4R, M3D4R, and S4R elements.

hzplaniso_ve.inp

Viscoelastic behavior included; uniaxial tension, loading and unloading; C3D8R, CPE4R, and CPS4R elements.

uaniso_inv_hgople.inp

Plane strain tension/compression; user subroutine UANISOHYPER_INV verified using built-in Holzapfel strain energy function; displacement control; C3D8, CPE8R, and CPEG4 elements.

uaniso_inv_isople.inp

Plane strain tension; user subroutine UANISOHYPER_INV verified using built-in isotropic hyperelasticity; displacement control; C3D8H and CPE4H elements.

Abaqus/Explicit input files

holzapfel_disp_xpl.inp

Uniaxial cyclic test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

holzapfel_load_xpl.inp

Uniaxial cyclic test; load control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

holzapfel_visco_xpl.inp

Combination with viscoelastic and Mullins effect; uniaxial cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x1_holzapfel_disp.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit, uniaxial cyclic test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_holzapfel_disp_n_y.inp

Continuation of xx_x1_holzapfel_disp.inp with state imported.

xx_x1_holzapfel_load.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; uniaxial cyclic test; load control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_holzapfel_load_n_y.inp

Continuation of xx_x1_holzapfel_load.inp with state imported.

xx_x1_holzapfel_visco.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; combination with viscoelastic and Mullins effect; uniaxial cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_holzapfel_visco_n_y.inp

Continuation of xx_x1_holzapfel_visco.inp with state imported.

Anisotropic hyperelasticity with Holzapfel-Ogden strain energy function

Elements tested

  • C3D8R
  • C3D10
  • C3D10HS
  • CPE4R
  • CPS4R
  • M3D4R
  • S4R

Problem description

Material:

Holzapfel-Ogden coefficients:
a = 0.00099993, b = 3.143938, a f = 0.004696677, b f = 12.33052484, a s = 0.002673816, b s = 9.057685378, a f s = 9.0234 × 10−7, b f s = 0.000670602.
Fiber directions (N=2):
  A 1 = ( cos γ , sin γ , 0 ) ,
  A 2 = ( cos γ , - sin γ , 0 ) ,
with γ =49.98°.
Compressible case: D = 0.1.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Abaqus/Standard input files

holzapfelogden_2fiber_std_uni.inp

Uniaxial tension; displacement control; C3D8, C3D10, and C3D20R elements.

holzapfelogden_2fiber_std_uni_c3d10hs.inp

Uniaxial tension; displacement control; C3D8, C3D10HS, and C3D20R elements.

holzapfelogden_2fiber_uni_hybrid.inp

Uniaxial tension; displacement control; C3D8H, C3D10H, and C3D20RH elements.

holzapfelogden_2fiber_std_uniori.inp

Uniaxial tension; displacement control; orientation along nonglobal Cartesian system; C3D8, C3D10, and C3D20R elements.

holzapfelogden_2fiber_std_uniori_c3d10hs.inp

Uniaxial tension; displacement control; orientation along nonglobal Cartesian system; C3D8, C3D10HS, and C3D20R elements.

holzapfelogden_c3d8_std_ss.inp

Simple shear; displacement control; C3D8 elements.

holzapfelogden_c3d8_std_uni.inp

Cyclic uniaxial tension; displacement control; C3D8 elements.

holzapfelogden_2fiber_pless.inp

Simple shear; displacement control; C3D8H, C3D8RH, and CPE4RH elements.

holzapfelogden_2fiber_ps.inp

Uniaxial tension; plane stress; load control; C3D8RH, CPS4R, M3D4R, and S4R elements.

sx_s_holzapfelogden.inp

Base problem for carrying out import from Abaqus/Standard to Abaqus/Explicit; C3D8R, CPE4R, CPS4R, M3D4, and S4R elements.

sx_x_holzapfelogden_n_y.inp

Continuation of sx_s_holzapfelogden.inp with state imported; C3D8R, CPE4R, CPS4R, M3D4, and S4R elements.

Abaqus/Explicit input files

holzapfelogden_disp_xpl.inp

Uniaxial cyclic test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

holzapfelogden_load_xpl.inp

Uniaxial cyclic test; load control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

holzapfelogden_visco_xpl.inp

Combination with viscoelastic and Mullins effect; uniaxial cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x1_holzapfelogden_disp.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; uniaxial cyclic test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_holzapfelogden_disp_n_y.inp

Continuation of xx_x1_holzapfelogden_disp.inp with state imported.

xx_x1_holzapfelogden_load.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; uniaxial cyclic test; load control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_holzapfelogden_load_n_y.inp

Continuation of xx_x1_holzapfelogden_load.inp with state imported.

xx_x1_holzapfelogden_visco.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; combination with viscoelastic and Mullins effect; uniaxial cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_holzapfelogden_visco_n_y.inp

Continuation of xx_x1_holzapfelogden_visco.inp with state imported.

Anisotropic hyperelasticity with Kaliske-Schmidt strain energy function

Elements tested

  • C3D8R
  • C3D10
  • C3D10HS
  • CPE4R
  • CPS4R
  • M3D4R
  • S4R

Problem description

Material:

Kaliske-Schmidt coefficients:
a 1 = 0.4 ×109, b 1 = 0.2 × 109, c 3 = 1.0 × 109, d 2 = 0.3 × 109, e 2 = 0.5 × 109, f 3 = 1.0 × 109, g 2 = 0.7 × 108.
Fiber directions (N=2):
  A 1 = ( cos γ , sin γ , 0 ) ,
  A 2 = ( cos γ , - sin γ , 0 ) ,
with γ =49.98°.
Compressible case: D = 1 × 10−11.

(The units are not important.)

Results and discussion

The results agree well with exact analytical or approximate solutions.

Input files

Abaqus/Standard input files

kaliske_2fiber_std_uni.inp

Uniaxial tension; displacement control; C3D8, C3D10, and C3D20R elements.

kaliske_2fiber_std_uni_c3d10hs.inp

Uniaxial tension; displacement control; C3D8, C3D10HS, and C3D20R elements.

kaliske_2fiber_uni_hybrid.inp

Uniaxial tension; displacement control; C3D8H, C3D10H, and C3D20RH elements.

kaliske_2fiber_std_uniori.inp

Uniaxial tension; displacement control; orientation along nonglobal Cartesian system; C3D8, C3D10, and C3D20R elements.

kaliske_2fiber_std_uniori_c3d10hs.inp

Uniaxial tension; displacement control; orientation along nonglobal Cartesian system; C3D8, C3D10HS, and C3D20R elements.

kaliske_c3d8_std_ss.inp

Simple shear; displacement control; C3D8 elements.

kaliske_c3d8_std_uni.inp

Cyclic uniaxial tension; displacement control; C3D8 elements.

kaliske_2fiber_ehgc.inp

Simple shear; displacement control; C3D8, C3D8R, and CPE4R elements.

kaliske_2fiber_pless.inp

Simple shear; displacement control; C3D8H, C3D8RH, and CPE4RH elements.

kaliske_2fiber_ps.inp

Uniaxial tension; plane stress; load control; C3D8RH, CPS4R, M3D4R, and S4R elements.

sx_s_kaliske.inp

Base problem for carrying out import from Abaqus/Standard to Abaqus/Explicit; C3D8R, CPE4R, CPS4R, M3D4, and S4R elements.

sx_x_kaliske_n_y.inp

Continuation of sx_s_kaliske.inp with state imported; C3D8R, CPE4R, CPS4R, M3D4, and S4R elements.

Abaqus/Explicit input files

kaliske_disp_xpl.inp

Uniaxial cyclic test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

kaliske_load_xpl.inp

Uniaxial cyclic test; load control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

kaliske_visco_xpl.inp

Combination with viscoelastic and Mullins effect; uniaxial cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x1_kaliske_disp.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; uniaxial cyclic test; displacement control; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_kaliske_disp_n_y.inp

Continuation of xx_x1_kaliske_disp.inp with state imported.

xx_x1_kaliske_visco.inp

Base problem for carrying out import from Abaqus/Explicit to Abaqus/Explicit; combination with viscoelastic and Mullins effect; uniaxial cyclic test; C3D8R, CPE4R, CPS4R, M3D4R, and S4R elements.

xx_x2_kaliske_visco_n_y.inp

Continuation of xx_x1_kaliske_visco.inp with state imported.

No compression

Elements tested

CPE4

Problem description

This option is used to modify the elasticity definition so that no compressive stress is allowed.

Material:

Young's modulus, E = 3 × 106
Poisson's ratio, ν = 0.3

Results and discussion

The results agree well with exact analytical or approximate solutions.

No tension

Elements tested

CPE4

Problem description

This option is used to modify the elasticity definition so that no tensile stress is allowed.

Material:

Young's modulus, E = 3 × 106
Poisson's ratio, ν = 0.3

Results and discussion

The results agree well with exact analytical or approximate solutions.

Compression factor with traction elastic behavior

Elements tested

COH2D4

COH3D8

Problem description

This option is used to modify the elasticity definition for uncoupled traction-separation elastic behavior such that the stiffness in compression is a user-specified factor times the stiffness in tension. Two cohesive elements are tested in each model. One element is subjected to a tensile strain (separation), while the other element is subjected to a compressive strain (separation).

Material:

Stiffness in normal direction, E n n = 2 × 105 
Compression factor = 2.0

Results and discussion

The results agree well with exact analytical solutions.